United Kingdom
Catalog   /   Tools & Gardening   /   Construction Power Tools   /   Paint Sprayers

Comparison Kraissmann FS 1000 vs STATUS SP500

Add to comparison
Kraissmann FS 1000
STATUS SP500
Kraissmann FS 1000STATUS SP500
Outdated Product
from $71.56
Outdated Product
TOP sellers
Devicepaint sprayerpaint sprayer
Typecordedcorded
Specs
Power consumption1000 W500 W
Rated pressure
0.2 bar /0.1 — 0.2 бар/
Paint consumption0.3 L/min0.35 L/min
Maximum viscosity80 DIN35 DIN
Nozzle size2.5 mm
Sprayingpneumaticpneumatic
Spray systemHVLP (High Volume Low Pressure)
Containerbottombottom
Container volume900 mL1000 mL
Tank materialmetalmetal
General
Remote compressor
Shoulder strap
Hose length1.8 m
Weight2.3 kg2.9 kg
Added to E-Catalogjuly 2019october 2015

Power consumption

The power consumed by the operation of an electric tool (see "Type").

Most modern spray guns, even performant ones, have a rather low power: for example, models with more than 1 kW are extremely rare, and in most cases, power consumption does not exceed 500 W at all. So when connecting such equipment to sockets, there are usually no problems; only single units of high performance, requiring 3.5 kW or more, have to be connected according to special rules (directly to the shield). In other cases, data on power consumption is most often not needed for normal use and may be required only for specific tasks — for example, to calculate the load on an autonomous generator.

Rated pressure

Nominal air pressure in the spray gun.

The general meaning of this parameter depends on the type of instrument (see above). So, in pneumatic models, nominal pressure data is required for connection to an external compressor. It is this pressure that this compressor must create at the inlet to the atomizer; too low values will lead to a decrease in efficiency, too high are fraught with breakdowns and even accidents with injury to others.

In turn, for electric models, the nominal pressure is the air pressure created by the unit's own compressor; the complete atomizer was originally designed for the same pressure. So in this case, this parameter is more of a reference than practically significant; it may be useful only for connecting replacement nozzles to the compressor (or vice versa, for using an existing nozzle with a third-party compressor).

As for specific pressure values, they are primarily determined by the spray system (see below). The diversity here is quite high: the most modest units give out less than 2 bar, 2-5 bar compressors are quite popular , 5-10 bar models are relatively rare, and some powerful performance solutions provide a pressure of 100 bar or more.

Paint consumption

Consumption of paint or other material (for example, mortar for plaster) when the spray gun is operating in normal mode.

The higher the flow rate, the more material the tool can apply per unit of time, the better it is suitable for processing large areas and for applying thick coatings. On the other hand, not all types of work require high productivity, and sometimes relatively low consumption is optimal. Detailed recommendations on this subject for different situations can be found in special sources.

Maximum viscosity

The maximum viscosity of the paint or other working material at which the spray gun is able to work normally. Specified in DIN units; a certain DIN in this case is the number of seconds it takes for a standard volume of paint (usually 100 mL) to pour out of a funnel with a strictly defined pour hole diameter (usually about 4 mm). Such a funnel (viscometer) can be supplied with the spray gun, but if necessary, it can be purchased separately.

Thus, the larger the DIN, the more viscous the composition is. And the larger the number indicated in the characteristics of the spray gun, the wider its capabilities, the thicker liquids can be poured into it without fear of clogging and breakage. At the same time, it should be taken into account that in fact it is not so often necessary to work with thick liquids — on the contrary, excessive viscosity worsens the quality of the coating, leads to streaks and increases the drying time. For example, most enamels and oil paints are used at a viscosity of about 20 DIN, latex paints up to 45 DIN, etc. General recommendations on this matter can be found in special sources, and specific ones can be found on the packaging of a particular brand of paint or other composition.

Nozzle size

The diameter of the nozzle at the outlet of the spray gun.

It is from this nozzle that paint or other working material comes out. And the productivity and spot size at the exit depend on the diameter. Accordingly, larger nozzles are better suited for processing large surfaces, while smaller nozzles provide greater precision and accuracy. Thus, this parameter is directly related to the type of device (see above). There are also spray guns with a replaceable nozzle, when more than one nozzle is provided in the kit, which expands the possibilities of using the device.

Spray system

The type of spray system used in the device. Different spray systems differ in the format of work and, as a result, in individual practical nuances of use:

HP (High Pressure) / CONV (conventional). One of the most famous and popular spray systems. The air pressure at the inlet and outlet of such spray guns is approximately the same. The advantages of HP systems are the simplicity of design, large working width, high paint application speed and relatively low air consumption. At the same time, the percentage of paint transfer in such sprayers is very low — more than half of the applied material bounces off the surface due to high speed and settles on surrounding objects. Another disadvantage is that the flow from the HP atomizer picks up fine dust and other "flying debris" heavily; because of this, additional grinding and polishing of the painted surface is often required.

RP (Reduced Pressure). Modification of conventional (HP) atomizers, characterized by a slightly reduced outlet pressure. This allowed for some improvement in the transfer coefficient and reduced debris levels while maintaining the advantages of good performance, uniformity and low air consumption. Nevertheless, according to these indicators, such devices are still inferior to low-pressure models.

HVLP (High Volume Low Pressure). Spray system with reduced outlet pressure (a...pprox. 0.7 bar) and large air volumes. One of the key advantages of such devices is a high ink transfer coefficient of at least 65%. In addition, the low speed of the paint supply reduces the level of debris: there are relatively few turbulences that “pull” debris along with them. The main disadvantage of HVLP systems can be called high air consumption; not every compressor can handle such an atomizer. In addition, they require additional filters to protect against oil and moisture entering the air during high compressor loads; and you can work with such a device only at a short distance (usually up to 15 cm), and in order to avoid drips, a certain skill is required.

— HVLP-II (New High Volume Low Pressure). The second generation of HVLP (see the relevant paragraph), which has a number of improvements compared to the original, but is generally similar.

— LVLP (Low Volume Low Pressure) / Trans-Tech. Spray systems developed as an improvement to HVLP. With the same advantages (high transfer coefficient, minimum debris), they consume much less air and have softer requirements for compressors and hoses. In addition, LVLP systems are less sensitive to pressure drops, and the effective spraying range in them reaches 25 – 30 cm. Of the notable disadvantages of this option, one can only mention a rather high cost.

— HVMP (High Volume Middle Pressure). Spray systems with high air flow and medium outlet pressure. Compared to HVLP, due to the higher pressure, they give a slightly lower ink transfer efficiency, but greater uniformity and range.

— LVMP (Low Volume Middle Pressure). Spray systems with low air consumption and medium pressure; a kind of modification of LVLP, characterized by higher pressure. Due to this, the cost is somewhat reduced, productivity, uniformity of application and capture width are increased; however, paint consumption is higher and the finished surface is rougher than original LVLP.

— HTE (High Transfer Efficiency). This marking is used in spray systems for which a high transfer coefficient is claimed by the manufacturers. In terms of characteristics, they are most often similar to LVLPs (see the relevant paragraph) — in particular, they have a rather large effective range. However, specific features in each case should be clarified separately.

— EA (Excellent Atomization). The main feature of such systems, in accordance with the name, is a very high degree of atomization of the material. Other performance characteristics in such systems may be different, these points should be clarified separately.

— HEA (High Efficiency Airless). Proprietary airless spray technology (see "Spray") used in the Wagner brand technique. Reduces paint wastage by more than 50% compared to more traditional systems, as well as more even material distribution, according to the creators. Suitable for water and oil based coatings.

MP (Middle Pressure). Transitional option between the HP and RP described above: it provides a slightly lower working pressure compared to HP, but not as low as in RP. For a number of reasons, it did not receive distribution.

HD (Heavy Duty). A marketing designation used on individual sprayers, typically high-capacity, high-volume sprayers. The specific characteristics of such systems should be clarified separately.

Container volume

The total volume of the paint reservoir supplied with the gun. Large tank, on the one hand, allows you to "charge" a lot of material and work for a long time. On the other hand, it increases the size and weight of the device; and a large amount of paint will also weigh accordingly (although for models with a separate tank location - see above - this is not critical). Therefore, the thinner and more delicate the work for which the spray gun is designed, the, as a rule, the smaller the tank volume : for example, in airbrushes (see "View") it rarely exceeds 50 ml, and in plaster models, in turn, can be measured liters. Therefore, most models have a volume of no more than a liter, namely 500 ml, 600 ml, 700 ml, 800 ml, 1000 ml.

Shoulder strap

The presence of a belt for holding on the shoulder in the design of the spray gun.

This feature is found mainly in models with an external compressor (see above). The sling allows the user to carry the compressor close to the gun, so the air hose does not restrict tool movement.

Hose length

The length of the hose supplied with the tool.

This indicator has two meanings. On the one hand, the long hose provides more freedom of movement, allowing you to work farther from the compressor; this is especially important when used with powerful, heavy compressors that are not designed to be carried around often. On the other hand, in some cases a relatively short hose is more convenient; a typical example of such a situation is the presence on the farm of a compact compressor that can be constantly carried with you.

Actually, if the compressor is initially included in the delivery set, then the manufacturer chooses the length of the hose, taking into account its features. But if the spray gun is bought without a compressor, you should pay special attention to this parameter. As for the specific length, the shortest hoses found in modern spray guns do not exceed 2 m, but this is often quite enough; a length of 2 – 5 m can be called an average, and in powerful models (mainly paint stations) you can find hoses and more than 5 m.
Kraissmann FS 1000 often compared
STATUS SP500 often compared