United Kingdom
Catalog   /   Tools & Gardening   /   Hand Tools   /   Vises & Clamps

Comparison STAYER 3247-50 sponges 50 mm vs TOPEX 07A306 65 mm / sponges 60 mm

Add to comparison
STAYER 3247-50 sponges 50 mm
TOPEX 07A306 65 mm / sponges 60 mm
STAYER 3247-50 sponges 50 mmTOPEX 07A306 65 mm / sponges 60 mm
Outdated ProductOutdated Product
TOP sellers
Typevisevise
Vice typemetalworkmachine
Specs
Compression mechanismscrewscrew
Jaw opening40 mm65 mm
Jaw width50 mm60 mm
General
Design features
rotating base
 
Installationclampfixed base
Materialcast ironaluminium
Weight1 kg
Added to E-Catalogjune 2017may 2017

Vice type

General purpose of a vice (see "Type"). This parameter determines their design and application features.

Locksmiths. A traditional vise designed primarily to hold a workpiece over a workbench for subsequent manual processing. The name "locksmith" is rather arbitrary, such tools can also be used for carpentry, plastic processing, etc. However, the main purpose of most of these vices is to work with metal parts. Note that there are locksmith models supplemented with pipe mounts, however, they are placed in a separate category — see below about it.

Carpentry. Carpenter's vise has a special case: the lead screw is placed under the tabletop, which allows not to clutter up the working space of the table. There is no massive body in the carpentry vice, as in locksmith models, because there is no need to apply great force to press soft workpieces. Such a vise is designed for fixing workpieces made of soft materials (wood, plastic, etc.).

Machine tools. A vice designed for clamping workpieces on various machines — drilling, milling, etc. The simplest machine vices have a characteristic "flat" layout with a small height and large width, while the movable sponge in them rests directly on the base of the structure and moves along special guides. Another type of machine vice is advanced two- and three-axis models, for m...ore details on them, see "Design".

For pipes. Vice for fixing pipes and other similar parts. They have the appearance of a characteristic U-shaped frame mounted on a base that plays the role of a fixed sponge; the movable sponge moves up and down between the legs of the letter “P”, and the frame itself is usually made open, which allows you to put on a vice even on long and closed pipes. Note that in extreme cases, ordinary bench vise can also be used for pipes (see the relevant paragraph); however, specialized models are more functional and reliable. Their disadvantage is that the maximum diameter of the clamped pipes is limited by the width of the frame.

Locksmith / for pipes. A vice that can be used both as a metalwork and for fixing pipes. In fact, they are a kind of bench vise, differ from traditional models by the presence of special protrusions under the main jaws — these protrusions are responsible for fixing the pipes. In some situations, this design provides an advantage over specialized "pipe" vices (see above): in a combination vice, you do not need to open the frame to fix a closed or long pipe. Yes, and the diameter restrictions in them are not so strict — in some models, the maximum pipe diameter is comparable to the width of the clamp. However, this nuance is still worth clarifying separately.

Jaw opening

Clamping width provided by vise or clamp (see "Type")

In this case, the width of the clamp means the maximum distance that the jaws or stops of the tool can be spread, in other words, the maximum size of an object that can be clamped with this device. Large clamping width, on the one hand, makes the tool more versatile and expands its capabilities; on the other hand, it affects the dimensions, weight and price, and also makes it difficult to work with small objects (a large tool is poorly suited for this). So, when choosing according to this parameter, you should not chase after the maximum margin, but take into account the size of the parts that you really plan to work with: for example, it hardly makes sense to buy a 500 mm clamp if you need a clamp for gluing plywood planks together.

Jaw width

Tool jaw width. It is indicated mainly for vices (see "Type") — among the clamps there are not so many models equipped with jaws.

Larger jaws provide a more secure hold, especially with large workpiece sizes, but make it difficult to work with small parts, and also affect the dimensions and weight of the entire tool.

Design features

Swivel base. This feature is found exclusively in the vise (see "Type"). It means that the tool can be rotated in a horizontal plane relative to the base. This gives additional features for choosing the position of the workpiece, which in some cases turns out to be very useful — for example, if the position of the part needs to be changed during processing, it can be easier to turn the tool on the base than to open the jaws and rearrange the part.

Graduation of the limb scale. This feature is found in a vise in which the working part with jaws can somehow move relative to the base — in particular, in three-axis and cross models (see "Design"). The scale of the limb allows you to accurately determine how far it was displaced or at what angle the working part was rotated relative to the base; this is indispensable for jobs that require high precision.

Anvil. Anvils are used in a vise (see "Type"). Such a device has the form of a special platform, capable of enduring fairly strong blows without consequences; it can be used for straightening, riveting, simple forging and other similar operations. Of course, when using an anvil, it is worth making sure that the workbench, table or other support on which the vise is mounted must also withstand such blows. However, built-in anvils are usually small and not designed for operations with very high impact force...s.

— Hinge mechanism. In a vice (see "Type") with this feature, the working part is connected to the base with a hinge. Thanks to this, it can be freely rotated 360 ° in a horizontal plane and tilted in any direction. This can be especially useful when working with non-standard-shaped parts, as well as with workpieces whose position needs to be changed during processing — instead of changing the position of the part in the clamp every time, it is more convenient to turn and tilt the vise itself on the hinge.

— Vacuum mechanism. A mechanism that operates on the principle of a conventional suction cup and allows the tool to reliably “stick” to flat surfaces. The device and application of such a mechanism depend on the type and design of the tool. So, among the clamps (see "Type"), models for plates are equipped with this function (see "Design") — in such devices a pair of suction cups is provided, thanks to which the clamp is attached to the plates to be joined. But in a vice, a vacuum mechanism is used to fix the tool itself on a workbench, desktop or other base. This design is found among relatively small models — for large and heavy vices, the vacuum mechanism is poorly suited.

— Double focus. The presence of a double stop in the design of the clamp (see "Type"). Features of such an emphasis in different models may vary: for example, in F-shaped models (see "Design"), only one side of the emphasis, located on the fixed part of the structure, is usually bifurcated; and in clamping models, U-shaped stops are installed on both sides. Anyway, this feature increases the contact area of the clamp with the workpiece. This has several advantages at once: for the same clamping force, the pressure is lower, which reduces the risk of damaging the surface; the probability of deformation of the workpiece is reduced; a long section can be covered with fewer clamps.

— Replaceable sponges. Possibility to replace vise jaws or clamps (see "Type"). In most tools, it is the jaws that, due to constant contact with the workpieces, wear out the fastest; in addition, they can be made of soft materials that are not particularly resistant to wear. Thus, some models provide the possibility of replacing the jaws — this is more reasonable than changing a completely serviceable tool as a whole.

Installation

Method of mounting the vice to the tabletop:

Clamp. Fixation with a clamp attached to the edge of the table. Clamps are more limited in the choice of installation location than bolts - such a fastener cannot be installed in the middle of a tabletop. At the same time, such installation is much simpler both during the initial installation and when moving the structure from place to place: there is no need to drill the table to prepare a place for the bolts.

Through (bolted). Installation using bolts inserted into through holes in the tabletop. The main advantages of this option are reliability, as well as the ability to choose the installation point almost anywhere on the countertop. On the other hand, the installation procedure itself is quite complicated and requires permanent placement in one place, without moving - after all, it is necessary to drill holes for the bolts.

Vacuum (suction cup). A mechanism that operates on the principle of a conventional suction cup and allows the tool to reliably “stick” to flat surfaces. The design and application of such a mechanism depend on the type and design of the tool. Thus, among clamps (see “Type”), models for plates are equipped with this function (see “Design”) - such devices provide a pair of suction cups, thanks to which the clamp is attached to the plates being connected. But in a vice, a...vacuum mechanism is used to fix the tool itself on a workbench, work table or other base. This design is found among relatively small models - the vacuum mechanism is poorly suited for large and heavy vices.

Material

The main material used in the construction of the tool.

Steel. In most cases, we are talking about classic tool steel — high-carbon or alloyed; both varieties have increased hardness and abrasion resistance. At a relatively low cost, this material is reliable, durable, practical and suitable for even the most powerful tools operating under high loads. But the resistance to corrosion of tool steel can be different: in particular, its carbon varieties do not tolerate contact with moisture, it is advisable to protect products from such materials from moisture and lubricate for storage. Anyway, detailed recommendations for the maintenance of the tool can be found in the instructions for it.

Cast iron. Cast iron is the "closest relative" of steel and differs from it primarily in its higher carbon content. This material is somewhat cheaper, but more fragile and less reliable, which is why it is poorly suited for high loads and is less resistant to shock.

Aluminium. The main advantage of aluminium alloys can be called a small weight; in addition, they are excellently resistant to corrosion. At the same time, such materials are poorly suited for high loads, and therefore are mainly used in relatively compact tools that are not designed for high working forces.

Plastic. Plastic is inexpensive and weighs a litt...le, but it is noticeably inferior in strength even to aluminium and cast iron, not to mention steel. Therefore, it is used not so much as the main body material, but as a material for stops and linings; many "plastic" models are actually steel or aluminium tools, complete with plastic parts. The meaning of this design is that the plastic stops are very gentle on the compressible parts, making them suitable even for delicate materials; and thanks to the metal base, the clamping force in such tools can be quite high.

Tree. The tree has a relatively low strength, therefore it is used only in certain models of clamps, and only sponges or stops are made from it — the rest of the structure is made of metal. Such tools cannot provide high clamping force, but this is not required, wooden clamps have a different specialization: they are designed for relatively soft and delicate materials that can be damaged by hard metal jaws or excessive clamping force.

Magnesium. Magnesium alloys combine light weight, high strength and excellent corrosion resistance. On the other hand, their price is also quite high, which is why such materials are rare — mainly in clamps (see "Type"), which use relatively little metal.

Zinc. Zinc alloys are quite durable and resist corrosion well. However, in terms of reliability and working properties, they are generally inferior to steel, and therefore are relatively rare.