United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Powerbank

Comparison Hoco B35E-30000 vs Pineng PN-920

Add to comparison
Hoco B35E-30000
Pineng PN-920
Hoco B35E-30000Pineng PN-920
Outdated ProductOutdated Product
TOP sellers
Battery capacity30000 mAh20000 mAh
Real capacity18900 mAh12600 mAh
Battery typeLi-IonLi-Ion
Charging gadgets (outputs)
USB-A32
Max. power (per 1 port)10 W
Power bank charging
Power bank charging inputs
microUSB
USB type C
microUSB
 
Power bank charge current via USB
2 А /5V/
2 А /5V/
Charge cycles500
Features
Bundled cables (adapters)
microUSB
microUSB
Features
info display
 
info display
flashlight
General
Body materialplasticplastic
Dimensions121x67x9.5 mm162x81x22 mm
Weight226 g435 g
Color
Added to E-Catalogaugust 2019february 2018

Battery capacity

The higher the battery capacity, the more energy the power bank is able to accumulate and then transfer when charging to gadgets connected to it. But it should be borne in mind that not all of the accumulated energy goes specifically to charging – part of it is spent on service functions and inevitable losses in the process of transmission. So in the specifications, the real capacity of the power bank is also often specified. If there is no data on real capacity, then when calculating it is worth proceeding from the fact that it is usually somewhere 1.6 times lower than the nominal one. For example, for a model with a nominal capacity of 10,000 mAh, the actual value will be approximately 6300 mAh.

As for the specific values of the nominal capacity, then in models with the lowest performance it is 5000 – 7000 mAh and even less ; such power banks are suitable as a backup source of energy for 1 – 2 smartphone charging with a not very capacious battery or other similar gadget. The 10,000 mAh solutions are the most popular nowadays – in many cases, this option provides the best price-capacity ratio. The 20,000 mAh and 30,000 mAh options are also very common. But even a capacity of 40,000 mAh or more, thanks to the development of modern...technology, is quite common.

Real capacity

The real capacity of the power bank.

Real capacity is the amount of energy that a power bank is able to transfer to rechargeable gadgets. This amount is inevitably lower than the nominal capacity (see above) — most often by about 1.6 times (due to the fact that part of the energy goes to additional features and transmission losses). However, it is by real capacity that it is easiest to evaluate the actual capabilities of an external battery: for example, if this figure is 6500 mAh, this model is guaranteed to be enough for two full charges of a smartphone with a 3000 mAh battery and smartwatches for 250 mAh.

The capacity in this case is indicated for 5 V — the standard USB charging voltage. At the same time, the features of milliamp-hours as a unit of capacity are such that the actual amount of energy in the battery depends not only on the number of mAh, but also on the operating voltage. In fact, this means that when using fast charging technologies (see below) that involve increased voltage, the actual value of the actual capacity will differ from the claimed one (it will be lower). There are formulas and methods for calculating this value, they can be found in special sources.

USB-A

The total number of USB-A ports for charging connected gadgets. This type is gradually being replaced by USB type C, however, most models still use USB-A as the main output. This is also indicated by the number of corresponding ports. Classic are 2 USB-A outputs. However, there are also compact models for 1 output, and more impressive ones with 3 and 4 USB-A(even more).

Max. power (per 1 port)

The maximum power that the power bank, theoretically, is capable of delivering to one rechargeable device. Usually, this power is achieved under the condition that no other device is connected to the battery (although exceptions to this rule are possible). And if you have ports with different charging currents or support multiple fast charging technologies, this information is given for the most powerful output or technology.

For modern power banks, a power of 10 watts or less is considered quite low; among other things, it usually means that the device does not support fast charging. Nevertheless, such devices are inexpensive and often turn out to be quite sufficient for simple tasks; Therefore, there are many models with similar specs on the market. The power of 12 – 15 W is also relatively small, 18 W can be called the average level, 20 – 25 W and 30 – 50 W is already considered an advanced level and in some solutions this parameter may exceed 60 W.

In general, higher power output has a positive effect on charging speed, but in fact there are a number of nuances associated with this parameter. Firstly, not only the power bank, but also the gadget being charged should support the appropriate power — otherwise the speed of the process will be limited...by the specs of the gadget. Secondly, in order to use the full capabilities of the power bank, it may be necessary for it to be compatible with certain fast charging technologies (see "Fast Charging").

Power bank charging inputs

The type of input used to charge the power bank's own battery. Simply put, this paragraph indicates which connector on the cable you need to charge the power bank. At the same time, some models provide several inputs for charging at once, which simplifies the search for a cable. Also note that for models with a built-in power bank charging connector (see below), the type of this connector is specified separately.

Most often in modern power banks there are standard connectors microUSB, USB type C and/or Apple Lightning. A lot of accessories are produced for such connectors — cables, network and car chargers, adapters, etc.; so there is usually no difficulty in finding a source of energy. Less common are models with DC input, they are usually equipped with their own power supply (or at least a cable under such a connector). Here is a more detailed description of the different types of inputs:

— microUSB. A smaller version of the USB connector, still very popular in portable tech, despite the active spread of the more advanced USB type C. It has relatively modest capabilities — in particular, it does not allow the implementation of some advanced fast charging technologies. On the other hand, it is very easy to find a source of energy for such a connector: both modern and many of the frankly outdated cables and chargers are...suitable for it.

— USB type C. A miniature type of USB connector, positioned, among other things, as the successor to microUSB. The most noticeable improvement is the reversible design, which allows you not to worry about which side of the plug is inserted into the connector. However, in the case of power banks, this is not the only or even the main advantage: USB type C has more extensive capabilities, allows more powerful currents and use a wider range of fast charging technologies (and Power Delivery was originally created specifically for this connector). Note that in some models the same connector of this type can be used both as an input for charging the battery and as an output for charging external devices — moreover, with automatic switching between these modes.

— Apple Lightning. Initially, this connector is designed for portable gadgets made by Apple. However, in the case of power banks, it can also be found in third-party devices: the idea is that the presence of Lightning allows you to charge an external battery using a cable from an iPhone or iPad and eliminates the need to look for a separate wire. For a number of reasons, this charging input is rarely used as the only one, more often it is provided in addition to microUSB or USB type C (see above).

— DC input. DC is a standard covering several types of connectors at once. Their common feature is a signature round shape, but the diameter, rated voltage and power can be different. In this sense, such connectors are not as convenient as USB type C, Lightning and other generally accepted standards — with a DC socket, it is best to use a native power supply (usually it comes bundled right away), and finding a third-party power source can be a problem. On the other hand, inputs of this type have practically no power limitations, it is easier to achieve high power supply with them than with the connectors described above. Therefore, DC inputs are used mainly in high-capacity power banks, where charging through a "weaker" interface would take an unreasonably long time. However, such models can also be equipped with standard microUSB or USB type C connectors "just in case".

Charge cycles

The number of charge-discharge cycles that the battery can withstand without significant loss of performance.

During operation, batteries wear out, and because of this, their specs (primarily capacity) noticeably deteriorate. Battery life is usually measured in charge-discharge cycles. The features of counting cycles are described in detail in special sources, but here we note that not always models with the same claimed resource turn out to be equally durable in fact. The fact is that different manufacturers may understand “significant loss of performance” differently: for example, one brand can indicate a resource up to a 20% decrease in capacity, the second — up to a 60% decrease. Therefore, when choosing, it makes sense to focus not only on pure numbers, but also on other sources — test results, reviews, etc.

Also note that battery life can be noticeably reduced if the operating conditions are violated — for example, in case of overheating or excessive cold.

Features

Additional functions and features provided in the design of the power bank. Such features may include, but are not limited to, an info display, a USB hub mode, a photocell for solar charging, a lighting source ( flashlight or lamp), and a shock -resistant body. Here's a more detailed description of each of these options:

— Info display. Own display installed on the power bank body. As a rule, it has a simple LCD matrix capable of displaying 2 - 3 characters and, in some cases, individual special icons. However, even such a screen provides a lot of additional information, makes it easier to manage the power bank and monitor its status.

— USB hub. Possibility of working as a USB hub (splitter). In this mode, the external battery’s own USB connectors act as USB inputs of a PC or laptop to which the power bank is connected. The connection itself, as a rule, is also carried out using the USB standard, and the battery can be charged. This function is convenient primarily because it allows you to use one USB port simultaneously to charge the power bank and connect a peripheral device (or even several). However, it does not hurt to make sure that the power supply of this port is sufficient to provide all these functions; and the charging speed may be quite slo...w. If the power bank is fully charged, it can also be useful as a classic USB hub: to increase the number of ports available for connecting peripherals, and also as a kind of remote USB extension cable (for example, if there is a free USB port only on the rear panel of the system unit, which is difficult to get to).

- Flashlight. In this case, a flashlight means a built-in light source of relatively low power, usually directional (as opposed to the lamp described below). Such a source performs an auxiliary function; it can be useful, for example, for illuminating the road at night, for short-term illumination in a dark room (basement, cellar), etc.

- Lamp. Built-in light source, usually in the form of an oblong panel of several LEDs; such a panel can be made folding. Unlike flashlights (see above), lamps provide not directional, but diffused light, which has a shorter range, but covers a larger space. Such lighting can be useful, for example, for reading, for illuminating a room during a power outage, and even for creating a certain atmosphere.

- Shock protection. Enhanced protection against impacts and shocks. The specific degree of such protection may vary; it should be clarified according to the official characteristics; however, most models in this category are capable of at least transferring a fall from a height of about 1 - 1.2 m onto a flat hard surface without consequences. Well, in any case, such devices will be more resistant to mechanical stress than conventional ones. It is also worth noting that shock protection in modern power banks is most often combined with protection from dust and moisture (see above), although there are exceptions to this rule.

— Charging from the sun. Possibility of charging the power bank from the sun or other bright light source. To do this, a corresponding device is installed in the body - a solar battery (photocell). This function can be especially useful during a long stay away from civilization - for example, on a hike. And although the efficiency of solar panels in general is not very high, when exposed to bright light for a long time, you can accumulate quite a lot of energy.
Hoco B35E-30000 often compared
Pineng PN-920 often compared