United Kingdom
Catalog   /   Home & Renovation   /   Lighting, Sockets & Switches   /   Light Bulbs

Comparison Gauss LED A60 8W 4100K E27 102802208 vs Maxus 1-LED-566 A60 FM 8W 4100K E27

Add to comparison
Gauss LED A60 8W 4100K E27 102802208
Maxus 1-LED-566 A60 FM 8W 4100K E27
Gauss LED A60 8W 4100K E27 102802208Maxus 1-LED-566 A60 FM 8W 4100K E27
Outdated Product
from $6.60 up to $7.08
Outdated Product
TOP sellers
TypelED filamentslED filaments
BaseE27 (regular)E27 (regular)
Bulbtransparenttransparent
Voltage230 В230 В
Consumption8 W8 W
General-purpose bulb75 W60 W
Luminous flux (brightness)780 lm800 lm
Colour temperature4100 К4100 К
Length105 mm111 mm
Diameter60 mm67 mm
Claimed running time35000 h30000 h
Added to E-Catalognovember 2018august 2016

General-purpose bulb

A parameter that describes the brightness of the lamp compared to a general purpose lamp (LON — a conventional incandescent bulb). Simply put, an analogue of LON is the power of an incandescent lamp, which is equal in brightness to the model in question. For example, a 75W LON analogue means that the lamp glows as brightly as a 75W incandescent lamp.

This parameter appeared for the convenience of evaluating and comparing different types of lamps in terms of brightness. Data on the luminous flux say little to the average user, and it makes no sense at all to evaluate the brightness by power — different types and even different models of lamps of the same type can differ markedly in efficiency. On the other hand, many users are accustomed to dealing with incandescent lamps, and comparison with such a lamp is familiar and understandable to them. In addition, the LON analogue allows you to compare different types of lamps, and it can also be very convenient when replacing incandescent lamps with more economical ones: for example, if 100-watt lamps were used in the chandelier, then the new lamps must have an LON analogue of at least 100 W — otherwise they may be too dim.

Luminous flux (brightness)

The conditional "amount of light" produced by a light bulb in normal mode. The higher the luminous flux, the brighter the light and the more clearly the illuminated scene will be visible. Note that lumen values are used primarily for special purposes; in everyday life, the estimation of brightness by the analogue of LON is more popular (see above), and here the ratio is as follows:

— 40 W analogue LON corresponds to a brightness of 370 lm;
— 60 W — 550 lm;
— 75 W — 800 lm;
— 100 W — 1200 lm;
— 150 W — 1900 lm;
— 200 W — 2700 lm.

Note that the principle "the more the better" in the case of the brightness of light bulbs is not always applicable. And the point here is not only energy consumption: too bright light is harmful to the eyes, leads to rapid fatigue and psychological discomfort.

Claimed running time

The service life of the light source claimed by the manufacturer is implied, during which the illuminator is able to generate the claimed brightness and temperature colour spectrum. It is believed that light-emitting diode (LED) bulbs have the longest service life — their working life can be 10,000 — 50,000 hours ( 50 years of operation), depending on the modification of the bulb. But this parameter cannot be regarded as a guarantee, since a lamp with an operating time of 25 years can work less, and maybe even more, than a lamp with a "life" of 30 or even 35 years. In second place are energy-saving fluorescent light bulbs that are capable of generating daylight — the service life of such is in the range of 2000 — 20,000 hours. The average service life of halogen bulbs is about 2000 — 4000 hours, but when the power supply is equipped with a soft start device, it can be almost doubled. In last place are classic incandescent bulbs, the service life of which is within 1000 hours.