United Kingdom
Catalog   /   Sound & Hi-Fi   /   Musical Instruments   /   Pianos & Keyboards   /   Synthesizers

Comparison Medeli M211K vs Medeli M12

Add to comparison
Medeli M211K
Medeli M12
Medeli M211KMedeli M12
Outdated ProductOutdated Product
TOP sellers
Typesynthesizer (rompler)synthesizer (rompler)
Keys
Number of keys6161
Sizefull sizefull size
Mechanicsactiveactive
Rigiditysemi-weightedunweighted
Specs
Polyphony32 voices32 voices
Built-in timbres580 шт320 шт
Auto accompaniment
Accompaniment styles200 шт100 шт
Learning mode
Tempo change30 – 280
Metronome
Sequencer (recording)
Mixer
Built-in compositions
 /155/
Effects and control
Timbres layering
Keyboard split
Reverberation
 /10/
Chorus
 /8/
Transposition
Connectors
Inputs
mini-Jack (3.5 mm)
 
Microphone1 шт
Connectable pedals1 шт1 шт
Outputs
USB to host (type B)
headphones
USB to host (type B)
headphones /combined with linear/
Linear outputs1
In box
In box
 
PSU
music stand
PSU
General
Built-in acoustics6 W6 W
Number of bands11
Displaymonochromemonochrome
Autonomous power supply
aA batteries /6 pcs/
Dimensions (WxHxD)946x101x316 mm940x145x360 mm
Weight4 kg4.5 kg
Color
Added to E-Catalogdecember 2018october 2017

Rigidity

Unweighted. Keys with a very low pressing force, literally "failing" under the fingers. This option is well suited for inexpensive synthesizers with passive mechanics (see above), but is rarely used in active models — a small resistance force makes it difficult to choose the optimal pressing force.

— Semi- weighted. Medium-strength keys, not up to the hardness of a full-fledged piano, but showing noticeably more resistance than unweighted ones. This variant is most popular among instruments with active mechanics (see above) — the force on the keys provides adequate feedback and at the same time playing such an instrument does not cause any special difficulties even for those who previously dealt only with unweighted keyboards.

Weighted. Keys with high actuation force, comparable to that of a classical piano. Used only in professional hammer action instruments (see above) — high rigidity is a must for such mechanics (more precisely, for the response that it must provide).

Built-in timbres

The number of built-in sounds provided in the synthesizer.

The number of timbres is often described as the number of instruments that a given model can imitate. However, this is not entirely true — rather, this parameter can be called "the number of instruments and sound effects." For example, the same instrument — an electric guitar — with different "gadgets" (distortion, overdrive) will sound differently, and in the synthesizer each such gadget will be considered a separate timbre. The “drums” timbre usually combines different types of drums and other percussion instruments — in other words, it allows you to portray both the “bass drum” and the cymbals without switching settings, just by pressing the desired keys. And some timbres may not have analogues among real instruments at all.

The more built-in timbres, the more extensive the possibilities of the synthesizer, the more diverse the sounds that can be extracted from it. At the same time, in high-end models like workstations (see "Type"), this number can reach 1000 or even more.

Accompaniment styles

The number of auto accompaniment styles (see above) originally provided in the synthesizer, in other words, the number of accompaniment options available to the user.

The more extensive this set, the higher the probability of finding among these melodies suitable options for a particular case. At the same time, the abundance of styles in itself is not yet a 100% guarantee that among them there will be a suitable one, especially since different synthesizer models can differ markedly in a specific set of melodies. So the list does not hurt to clarify before buying. Also note that the situation can be corrected by user styles (see below) — many synthesizers with auto accompaniment support them.

Learning mode

The presence of a learning mode in the design of the synthesizer.

The purpose of this function is clear from the name. It is most often based on the following principle: the synthesizer itself tells the student which keys to press, displaying the keyboard on the display or highlighting the necessary keys using the backlight (if available, see above). Of course, at different levels of learning, the format of such prompts will also be different: for example, at the very beginning, the synthesizer highlights the necessary notes until they are pressed, and at the final stage it highlights them at the tempo at which you need to play the melody, and evaluates the accuracy of the student pressing the desired keys. There are also other features and nuances of learning — for example, the mode of separate learning of parts for the left and right hands, when the instrument itself plays one part and tells the student how to play the second. In addition, a metronome function is practically mandatory for a synthesizer with this mode (see below).

Regardless of the specific functionality, this mode will be very useful for those who are just developing their keyboard playing skills.

Tempo change

The range in which you can change the tempo of the programme played by the synthesizer — auto accompaniment, lesson tune (see above), metronome (see below), recorded sample, etc.

Pace is measured in beats per minute. Changing it allows you to adjust the speed of the synthesizer to the specifics of the situation — for example, slightly slow down the tutorial if it is too hard to master at the initial pace. The wider the range of tempo adjustment, the more options the musician has to choose from, especially in the area of very slow and very fast tempos.

Note that the traditional range of musical tempos covers values from 40 beats / min (“grave”, “very slowly”) to 208 beats / min (“prestissimo”, “very fast”), however, in synthesizers it can be more extensive — for example, 30 – 255 bpm.

Mixer

The presence of a mixer in the design of the synthesizer.

A mixer in this case is a device designed to control individual audio channels that make up the sound of a synthesizer as a whole. The list of these channels includes, in particular, the main voice, the layered voice (see “Dubbing voices”), several auto accompaniment channels (main, bass, drums, etc.). With a mixer, the musician can manually control these channels — turn some of them on and off, switch the timbre, tempo, key, etc. This greatly expands the possibilities for using the synthesizer.

Timbres layering

The ability to overlay different timbres of the synthesizer sound on top of each other. This creates the effect of the sound of two (or even more) instruments at once — for example, piano and violin. At the same time, in advanced models, it may be possible to set different settings for different timbres so that the sameness of the extracted notes is not so noticeable — for example, the same "violin" can be set to smooth transitions between notes, while on the "piano" they will sound jerky.

Reverberation

Synthesizer support for reverb.

Initially, reverberation is the phenomenon of gradual attenuation of sound during its repeated reflections from walls or surrounding objects; in this case, it is meant to recreate this effect with the help of special processing of the audio signal. By changing the reverb settings, you can, in particular, imitate rooms with different acoustic properties — for example, a strong echo with a minimum delay creates the effect of being in a cave, a noticeable echo with a noticeable delay — being in a vast "boomy" room like a cathedral, etc. However, reverb can also achieve quite specific effects.

Chorus

The presence of a chorus effect in the synthesizer.

The word "chorus" comes from chorus, "chorus", and the purpose of this function is quite consistent with the origin of its name — it creates the effect of the choral sound of several instruments. To do this, the original sound signal is copied (one or more times) and the copies are added to the overall sound with a small, up to 30 ms, time shift, and this shift is constantly changing. In this way, a small but noticeable difference in individual "voices", characteristic of a real choir, is imitated. However it is worth noting that a full-fledged resemblance to a choral performance with the help of a chorus cannot be achieved even on the most advanced synthesizer; however, this effect in itself sounds very interesting, thanks to which it does not lose its popularity.
Medeli M211K often compared