Suction power
The suction power provided by the vacuum cleaner. For models with power adjustment (see below), in this case, the maximum value is taken into account. Note that "suction power" is sometimes erroneously also called the suction force, indicated in pascals; see below for more details.
Suction power is a key indicator that determines the capabilities of the unit: the higher it is, the more efficiently the vacuum cleaner can draw in various contaminants, and the better it handles with carpets, fabrics and other materials into which dust can penetrate deeply. On the other hand, high power inevitably affects the weight, power consumption, dimensions and price of the device. Therefore, it does not always make sense to chase the maximum values — you need to take into account the real working conditions and the general purpose of the vacuum cleaner.
The specific numbers found in this paragraph largely depend on the type of device. For example, in handheld household models, suction power
does not exceed 100 W,
and for conventional household units, an indicator of 100 – 150 W is still considered very limited. At the same time, we note that the minimum required for a full-fledged dry cleaning of smooth floors is considered to be
300 – 350 W,
for carpet and other short pile coatings — 350 – 400 W, and for long pile materials and upholstered furniture
higher rates are desirable. Vacuum cleaners with lower suction power values are intended not so much for periodic cleaning, but for constant (ideally daily) maintenance of cleanliness in an already tidy room.
As for the relationship between suction power and suction force, it is as follows: power is the suction force (thrust) multiplied by the airflow (performance). Without going into too much detail, we can say that the efficiency of the vacuum cleaner is determined by both of these indicators. And it is worth evaluating this efficiency by suction power (regardless of the specific relationship between traction and performance).
Dust collector capacity
The nominal volume of the dust collector installed in the vacuum cleaner.
This indicator largely depends on the type of unit (see above). For example, in most handheld household models, the capacity
does not exceed 0.5 L. The volume of the container in upright vacuum cleaners and robots can be somewhat larger — among the first variety there are quite a few models for
1 – 2 liters or even more, and among the second — by
0.6 – 1 liter and a little more. For conventional vacuum cleaners, the minimum figure is actually about 0.8 – 1 L; dust collectors for 1 – 2 L and
2 – 4 L are very popular in such devices; the maximum capacity is actually
4 – 6 liters — units of a similar layout, but with a larger capacity, are usually referred to as household ones. In turn, relatively small containers are occasionally found among workshop models. However, in vacuum cleaners of this type, the capacity is generally quite large — it can reach
26 – 50 liters or even
more ; the same applies to industrial (construction) units.
In general, a larger dust container allows you to work longer without interruptions. On the other hand, a capacious container itself takes up more space and, accordingly, affects the size, weight and price. So when choosing th
...is parameter, it is worth considering the actual features of the use of a vacuum cleaner. Here we can give such an example: for a full-scale cleaning of an average city apartment, a capacity of about 1 – 1.5 litres is required. Thus, say, a 4-litre bag allows you to carry out two such cleanings with sufficient efficiency without unloading the vacuum cleaner. There are more detailed recommendations regarding the optimal volume of the dust collector, including specific cleaning options. These recommendations can be found in special sources.Additional operating modes
Additional modes of operation provided by the robot cleaner (see "Product type").
First of all, let us clarify that the standard modes, in this case, include two formats of cleaning at standard power — continuous, in which the vacuum cleaner carefully cleans the entire room (or its specified area), and chaotic, in which it moves randomly within the working area. Other ways of working are considered additional; their list is given in this paragraph. Among the most common additional modes are
spot cleaning (Spot),
perimeter cleaning (Edge),
and turbo mode. In addition, a fairly popular function is the Zigzag. Here is a detailed description of the different options:
— Spot cleaning (Spot). A mode that allows you to use the vacuum cleaner for targeted cleaning of a relatively small area of the room — for example, when spilling a small amount of debris. Most often, this programme works as follows: the robot moves to the centre of a user-defined zone, and then starts moving from this point in an expanding spiral and stops at a given distance from the starting position.
— Perimeter cleaning (Edge). A mode that allows you to start the vacuum cleaner around the perimeter of a given zone. By the name, it is mainly used for cleaning along the walls of the room: a lot of dirt accumulates in these places, which are difficul
...t to remove when using standard cleaning modes.
— Turbo mode. Power mode for more suction force. Usually, the movement of the vacuum cleaner, in this case, can be carried out according to any programme available in the settings — both standard (combing, random movement) and additional (Spot, Edge, Zigzag). Anyway, the turbo mode is useful primarily for cleaning carpets and other floor coverings with pile, for which the standard power of the vacuum cleaner is not enough. However, working at increased traction increases the load on the unit and increases its wear. Therefore, most models have restrictions on the maximum time of continuous operation in turbo mode and sometimes on the minimum duration of breaks between switching on this mode.
— Zigzag. Zigzag movement is a kind of transitional variant between the orderly combing of the room and the random choice of direction. Zigzag allows you to achieve greater efficiency than chaotic movements. In addition, with such a movement, it is easier to compensate for the presence of various obstacles and ensure thorough cleaning of the entire given area.Mapping system
The mapping system is provided in many modern robots. It allows you to determine the size of the room and the location of various obstacles present in it, as well as fix the route travelled by the vacuum cleaner. There are various systems according to their principle of operation, among which there are three types. Methods for building a map based on data from a sensor or a camera belonging to the basic level. But building a map using a
laser rangefinder (lidar) gives more accurate results and elevates the device to a higher category. Accordingly, the presence of such a system affects the overall cost but provides several advantages. Firstly, cleaning efficiency is noticeably increased: the robot remembers which areas have already been cleaned and pays maximum attention to untreated areas. Secondly, movements are carried out along optimal trajectories, the shortest paths; this saves energy and extends battery life. Thirdly, it becomes possible to effectively clean large spaces of complex shape (for example, the entire apartment). And if the vacuum cleaner is controlled through an application on a smartphone or other gadget, the created map is displayed in this application. It gives various additional features: correcting the collected data, real-time device control, building routes, limiting cleaning through the application (see above), etc. P.
As for the methods of building maps (and further naviga
...tion), there are mainly such options:
— Camera. Such systems work because the robot, using a digital camera, “examines” the room, remembering its shape and the location of objects. A fairly simple, inexpensive and at the same time practical way: usually, the camera is supplemented by an object recognition algorithm, thanks to which it can recognize obstacles stored in memory, regardless of their position in space. It is useful when you have items that are frequently moved around, such as chairs. In addition, if the map is displayed in an application on a smartphone, it looks like not just a conventional diagram but a real image, which is very convenient. The disadvantages of this option include perhaps a slightly lower accuracy than that of sensors and even more so rangefinders. However, it is not critical, and in some models, information from the camera can be supplemented with data from sensors, which completely reduces this drawback to zero.
— Sensors. Creating a map through the operation of various special sensors. Most often, such systems use sensors for obstacles and fall protection (see "Robot features"), working in conjunction with an inertial module that determines the current position of the robot in space. Receiving a signal from one of the sensors, the robot saves data on the trigger point; from such points, as a result, the map is formed. It is a fairly reliable method. It is inferior in accuracy to rangefinding cartography (see below) but it is also cheaper. The disadvantages of this type of mapping include some inconvenience when managing via the application. The map is displayed in the form of a scheme map, which is not always convenient for the user. In addition, vacuum cleaners with such systems are unable to respond in advance to a change in the situation — this change is determined only when the sensor is triggered again.
— Rangefinder (laser). Building a map using a laser range finder — lidar. Usually, such a rangefinder covers the space all 360 ° around the vacuum cleaner, scanning the space at a high frequency (hundreds and even thousands of measurements per second in all directions). It allows you to create very accurate maps in a short time and with a minimum of movement in space. In addition, the rangefinder is used not only during the initial mapping but also during further work. Thanks to this, the robot instantly reacts to changes in the environment and corrects the trajectory of movement. The main disadvantage of such systems is their rather high cost. In addition, as in the case of sensors, when controlling the vacuum cleaner from a smartphone, the map is displayed in the form of a scheme map, which is somewhat less convenient than when using cameras.
— Rangefinder + camera. It is the most advanced and functional option: the laser provides high accuracy in determining distances and a quick response to changes in the environment. And the camera allows you to create not just scheme maps but realistic images of premises that are convenient when controlled via a smartphone. The main disadvantage of such combined systems is their very high cost. Therefore, they are extremely rare, mainly in premium robot vacuum cleaners. Voice assistant
Types of
voice assistants supported by the robot vacuum cleaner.
As the name implies, this function allows you to control the robot using voice commands. However, we emphasize that in this case, we are not talking about the voice recognition system built into the vacuum cleaner but about compatibility with an external device on which the corresponding voice assistant is installed — a smartphone, tablet, smart speaker, etc. Thus, to use voice control, an additional device will inevitably be required; on the other hand, there are no problems with the search for such a device nowadays. And in itself, such a control method often turns out to be more convenient than a command from the remote control or searching for the desired option in the control application.
As for specific assistants, the most popular nowadays are (in alphabetical order) Amazon Alexa, Apple Siri, Google Assistant. And in robot vacuum cleaners, compatibility can be provided both with one of them and with several at once. The specific control functionality available through the voice assistant should be specified separately for each model. It is also worth paying attention to the supported languages: for Siri, the language must be selected in the settings, for the Google Assistant, automatic language recognition is available (some adjustment may be required), and in Alexa (as of early 2021) support for the Russian language is not provided at all.
Cleaning area
Cleaning area for which the robot vacuum cleaner is designed.
It is the maximum size of the room that the device can effectively process without the need to empty the dust container or charge the battery. It is worth choosing according to this parameter with a certain margin — this will give an additional guarantee in case of various emergencies. On the other hand, you should not take too much stock: after all, a large cleaning area requires more capacious batteries and capacious dust collectors, which significantly affects the dimensions, weight, and most importantly, the price of the vacuum cleaner.
As for specific figures, the most modest models nowadays are designed for 45 – 60 m2 — this corresponds to an average apartment with 1 – 2 rooms. And in the most advanced and heavy devices of this type, the cleaning area can be 300 m2 or even more.
Battery voltage
The rated voltage of the battery used in the vacuum cleaner with the corresponding type of power supply (see above).
Initially, manufacturers select the characteristics of the battery (including voltage) in such a way that the vacuum cleaner can be guaranteed to deliver the power claimed in the specifications. Therefore, when choosing this indicator often does not play a decisive role. However, it can also be useful in such cases — for the most reliable comparison between models with different battery capacities in ampere-hours. See "Battery capacity" for details.
In addition, voltage data can be useful during operation — for example, to find a spare/replacement battery or a third-party charger.
Battery capacity
The capacity of the battery installed in the vacuum cleaner.
Recall that batteries are used in all robots, as well as other types of vacuum cleaners for which mobility is important; see "Power supply" for details. As for battery capacity, theoretically, a larger battery allows you to work longer without recharging. However, there are nuances. Firstly, the actual battery life of the unit will also depend on its type, power and some features of the functionality. Secondly, the actual battery capacity is determined not only by this indicator but also by the voltage in volts. So if these batteries differ in voltage, you need to convert their capacity into watt-hours and use this data when comparing. These calculations are described in more detail in special sources.
In light of all this, only vacuum cleaners with similar specifications can be directly compared in terms of battery capacity. And it is best to evaluate the actual battery life by the directly claimed operating time.
Battery run time
The operating time of a battery-powered vacuum cleaner (see "Power supply") on a single battery charge.
Usually, the average operating time in normal mode is indicated here. Accordingly, in fact, the battery life of the vacuum cleaner may differ slightly from the claimed one, depending on the chosen application format. Nevertheless, the operating time indicated in the specifications is a fairly reliable indicator; it can be used both for a general assessment of battery life and for comparing the selected vacuum cleaner with other models.
Separately, we note that increasing battery life requires either the use of more capacious (and therefore more expensive and heavier) batteries or a decrease in engine power (and the efficiency of the unit as a whole). So it is worth looking specifically for a long working vacuum cleaner if these moments are outweighed by a long operating time.