Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Heat Pumps

Comparison Cooper&Hunter CH-HP8.0SINK3 8 kW vs Cooper&Hunter CH-HP8.0SINK 8 kW

Add to comparison
Cooper&Hunter CH-HP8.0SINK3 8 kW
Cooper&Hunter CH-HP8.0SINK 8 kW
Cooper&Hunter CH-HP8.0SINK3 8 kWCooper&Hunter CH-HP8.0SINK 8 kW
Outdated Product
from $5,621.16
Outdated Product
TOP sellers
Main
Indirect water heater ordered separately
Heat sourceair-waterair-water
Suitable forheating and DHWheating and DHW
In box
In box
indoor unit (hydromodule)
outdoor unit
indoor unit (hydromodule)
outdoor unit
Specs
Operating modeheating and coolingheating and cooling
Max. heat output8 kW8.5 kW
Max. cooling output8.2 kW8.5 kW
Power consumption (heating)1.85 kW2.45 kW
Power source230 V230 V
Minimum operating temperature-25 °C-20 °C
Max. water temperature70 °C55 °C
Compressor
inverter
inverter
Energy efficiency
t°C outside77 °C
Supply t°C35 °C35 °C
COP4.324.15
More specs
RefrigerantR410AR410A
Noise level31 dB55 dB
Country of brand originUSAUSA
Dimensions981x500x324 mm900x500x324 mm
Outdoor unit dimensions980x788x427 mm980x790x360 mm
Hydromodule weight56 kg53 kg
Outdoor unit weight85 kg78.5 kg
Added to E-Catalogaugust 2019january 2016

Max. heat output

The maximum heat output generated by a heat pump is the amount of heat it can transfer from the outdoors into the heating system and/or domestic hot water.

The heat output is the most important spec of a heat pump. It directly determines its efficiency and ability to provide the required amount of heat. Note that this spec is shown for optimal operating conditions. Such conditions are rare, so the actual output heat is usually noticeably lower than the maximum; this must be taken into account when choosing. There are special formulas for calculating the optimal value of the maximum heat output, depending on the specific condition.

Max. cooling output

Maximum cooling output delivered by the pump.

The pump operates in the cooling mode removing excess heat from the room to the environment — it plays the role of an air conditioner. The required cooling capacity depends on the area of the building, the specs of its thermal insulation and some other factors; methods of its calculation can be found in special sources. Also note here that conventional heating equipment (radiators, underfloor heating) is not suitable for cooling, for this it is necessary to use special equipment (for example, fan coil units).

Power consumption (heating)

Electric power consumed by the heat pump when operating only for heat transfer, without the use of an additional heating element (if any, see below). The ratio of thermal power to power input determines the thermal coefficient COP (see below) and, accordingly, the overall efficiency of the unit. It also affects overall power consumption (and therefore electricity bills), as well as some power and connection requirements — for example, models powered by 230 V and with a power of more than 5 kW cannot work from an outlet and require a special connection to the mains.

Minimum operating temperature

The lowest ambient temperature (air or ground, see Heat source) at which a heat pump can safely and reasonably efficiently perform its functions. Efficiency at minimum temperature, of course, is noticeably reduced, but the device can still be used as a heat source.

The data on the minimum operating T allows you to evaluate the suitability of the pump for the cold season.

Max. water temperature

The highest temperature to which the pump can heat the coolant. It is worth noting that such indicators can be achieved at a fairly high temperature of air or ground. And since heat pumps are used during the cold season, the actual maximum temperature, usually, is less than theoretically achievable. Nevertheless, this parameter makes it possible to evaluate the capabilities of the unit or its suitability for certain tasks.

t°C outside

Outside temperature for which the COP is given. See below for details on this coefficient and the value of the outdoor temperature.

COP

The COP (coefficient of performance) is a key characteristic that describes the overall efficiency of a heat pump. It represents the ratio between the thermal power and power consumption of the unit (see above) – in other words, how many kilowatts of thermal energy the pump produces per 1 kW of electricity consumed. In modern heat pumps, this figure can exceed 5.

However, note that the actual COP value may vary depending on the outside temperature and the supply temperature. The higher the difference between these temperatures, the more resources are needed to “pump” thermal energy and the lower the COP will be. Therefore, in the specifications it is customary to indicate the COP value for specific temperatures (and in many models – two values, for different options) – this allows you to evaluate the actual capabilities of the unit.

Noise level

The average noise level produced by the heat pump during normal operation.

The lower the noise level, the more comfortable the use of the unit will be; this is especially important when installed inside residential buildings or apartments. The noise level is a non-linear value, so it is easiest to evaluate using comparative tables. They can be found in special sources. Here we note that the quietest modern models give out a volume of about 39 – 40 dB — this is the volume of ordinary human speech and the maximum level allowed for living rooms in the daytime; the loudest ones are noisy at 60 – 62 dB — this can be compared with a TV at an average volume.