Dark mode
United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   DACs

Comparison DACs

Save List
Add to comparison
FiiO D03K
FiiO D03K
from $60.00
Outdated Product
TOP sellers
TypeDAC
Number of channels2 шт
Specs
DAC sampling frequency192 kHz
DAC bit depth24 bit
Frequency range20 – 20000 Hz
Signal to noise ratio95 dB
Coef. harmonic distortion0.005 %
Connectors
Inputs
coaxial S/P-DIF
optical
Outputs
Mini-Jack (3.5 mm)
RCA
General
Power supplymains powered
External power supply
Dimensions (WxDxH)49х62х21 mm
Weight50 g
Added to E-Catalogjuly 2016
Price comparison

Type

- DAC. Actually, digital-to-analog converters in the original sense of the word are devices designed to convert digital audio transmitted via an optical, coaxial or USB interface into an analog line-level audio signal, usually in stereo format. Sometimes switching of a digital signal may also be provided (output unchanged to one or another digital output), rarely also reverse, analog-to-digital conversion and/or sound processing using built-in filters and regulators.

DAC with amplifier. Digital-to-analog converters (see corresponding paragraph), complemented by a built-in headphone amplifier and headphone output. The use of this feature can vary: some devices use the “ears” to control the sound coming to the DAC outputs, while others are actually high-end compact headphone amplifiers that connect to the digital output of a PC, game console or other similar device.

Number of channels

The number of audio channels supported by the device.

The standard option for modern DACs is classic 2-channel stereo sound. However, in addition to this, there may be other options. Thus, there are multi-channel (up to 32 channels) devices; they are usually referred to as audio interfaces (see "Type") and are intended for mixing multiple sound sources - for example, a microphone and several instruments. The opposite option is single-channel converters; They are used mainly in hi-end audio systems on the “one per channel” principle and are intended for maximum channel separation (which, in turn, allows you to very accurately configure the operating parameters of each channel).

DAC sampling frequency

Sample rate of the digital-to-analogue converter used in the device.

DAC in this case means the “heart” of the device, the main circuit that directly provides the conversion of digital audio to analogue. And the sampling rate is initially one of the characteristics of digital sound. In this case, its meaning is as follows: the sampling rate of the DAC must not be lower than the corresponding indicator in the incoming audio signal, otherwise the device will not be able to effectively cope with the conversion.

DAC bit depth

The bit depth of the digital-to-analogue converter used in the device.

DAC in this case means the “heart” of the device, the main circuit that directly provides the conversion of digital audio to analogue. Bit depth is initially one of the characteristics of a digital audio signal. In this case, its meaning is as follows: the bit depth of the DAC must be no lower than the bit depth of the audio signal with which the converter is planned to be used, otherwise the device will not be able to effectively cope with the conversion.

Frequency range

The audio frequency range supported by the device. Most often, we are talking about the frequency range that the device can output in an analogue audio signal at the output.

In general, the wider the frequency range — the fuller the sound, the lower the likelihood that the transducer will “cut off” the upper or lower frequencies. However, note that the human ear is able to hear sounds at frequencies from 16 to 22,000 Hz, and the upper limit decreases with age. So from a practical point of view, it does not make sense to provide a wider range in audio technology. And the impressive numbers found in high-end devices (for example, 1 – 50,000 Hz) are more of a "side effect" of advanced electronic circuits and are given in the characteristics mainly for the purpose of advertising. Also recall that the overall sound quality is affected by many other factors, in addition to the frequency range.

Signal to noise ratio

The signal-to-noise ratio provided by the converter.

This parameter describes the ratio of the volume of the pure sound produced by the device to the volume of its own noise (which is inevitably created by any electronic device). Thus, the higher the signal-to-noise ratio, the clearer the sound, the less the DAC's own noise affects the audio signal. Indicators up to 80 dB can be considered acceptable, up to 100 dB — not bad, 100 – 120 dB — good, more than 120 dB — excellent. However, it is worth remembering that the overall sound quality is affected not only by this parameter, but also by many others.

Note that the signal-to-noise ratio is often associated with such a characteristic as the dynamic range (see above). They are similar in general meaning, both describe the difference between an extraneous background and a useful signal. However, the noise level in the calculations is taken differently: for the signal-to-noise ratio, the background of the converter “at idle” is taken into account, and for the dynamic range, the noise that occurs when a low-level signal is output. This is the reason for the difference in numbers.

Coef. harmonic distortion

The coefficient of harmonic distortion produced by the converter during operation.

The lower this indicator, the clearer the sound produced by the device is, the less distortion is introduced into the audio signal. It is impossible to completely avoid such distortions, but it is possible to reduce them to a level that is not perceived by a person. It is believed that the human ear does not hear harmonics, the level of which is 0.5% and below. However, in high-end audio applications, distortion rates can be much lower — 0.005%, 0.001% or even less. This makes quite a practical sense: the distortions from the individual components of the system are summed up, and the lower the harmonic coefficient of each component, the less distortion there will be in the audible sound as a result.

Inputs

Inputs provided in the design of the device.

Mini-Jack (3.5 mm). A standard 3.5mm mini-jack is typically used as an analogue (line) audio input to two stereo channels. It is designed mainly for portable devices like smartphones, pocket players, etc.

Jack (6.35 mm). Connector used as an analogue audio input. It is similar in design to the mini-Jack 3.5 mm (see the relevant paragraph), but it is larger and provides more reliable contact. As a result, this connector is not used for portable, but mainly for stationary audio equipment, including professional. The second feature is that the 6.35 mm Jack can play the role of both a line input and an instrument/mic input. The latter is found in audio interfaces (see "Type"), while such devices may be provided with combined connectors that combine Jack and XLR (see the relevant paragraph). In addition, it is worth noting that a balanced connection is often made through a 6.35 mm jack — a special kind of connection used in professional audio equipment and allowing you to transmit a signal without interference even over fairly long wires.

RCA. Characteristic round connectors for a tulip-type plug; can be used in different interfaces, but "RCA input" usually means an analogue audio line input. Note that only one channel of audio can be transmitted through one analogue RCA connector; therefore,...the number of such connectors corresponds to the number of channels supported by the device (for example, a stereo input consists of a pair of RCA jacks).

— Phono. A specialized input for connecting a vinyl player, or rather, a turntable pickup. The peculiarity of the audio signal from the pickup is that it is “skewed” in frequencies, and in order to bring the frequency response back to normal, it is necessary to pass the sound through a phono stage. Accordingly, the presence of the Phono input means the presence of a phono stage in the device and the ability to work as a preamplifier for vinyl players. Keep in mind that there are two types of pickups — MM and MC, and before buying a device with a Phono input, it is advisable to check which of these varieties it is compatible with. However, it is not uncommon to find support for both options at once.

XLR. In audio technology, three-pin XLR connectors are most often used. Theoretically, they can have different purposes, but in fact, when they say "XLR input", they usually mean an analogue audio input — either linear or microphone / instrumental (in the latter case, this connector can be combined with a 6.35 mm Jack — see the relevant paragraph). This connector is popular in professional audio equipment, and there are two main reasons for that. Firstly, XLR provides a reliable and tight connection; locks are often provided in the sockets to secure the plugs. Secondly, the connection through this connector is carried out by the so-called. in a balanced way, on three wires instead of two. The peculiarity of such signal transmission is that external interference is filtered, in fact, by the wire itself, which allows you to transmit a high-quality audio signal even with long cable lengths.

Coaxial S / P-DIF. Input for a digital audio signal, one of the varieties of S / P-DIF (the second variety is optical). Allows you to transmit both stereo and multi-channel audio. RCA is used as a connector, but this input should not be confused with RCA inputs (see the relevant paragraph). The coaxial interface uses a fundamentally different signal format, all sound channels are transmitted through one connector, and even a special cable must be used for such a transmission — shielded. Compared to the fibre used in the optical interface, this cable is more susceptible to electromagnetic interference, but less delicate.

Optical. Input for digital audio signal transmitted via TOSLINK fibre optic cable. This interface is a kind of S/P-DIF and is similar in capabilities to the coaxial input (see the relevant paragraph) — in particular, it allows you to transmit multi-channel audio. The key difference and the main advantage of such a connection is complete insensitivity to electromagnetic interference. On the other hand, fibre optic cable is quite fragile and susceptible to damage, it must be protected from strong pressure and bending.

Balanced digital (AES / EBU). Professional interface for working with digital audio signal. Most often based on an XLR plug, but do not confuse the AES / EBU input with the XLR input: the first version works with a digital signal, where all audio channels are transmitted through a single connector, the second with an analogue one, according to the “one connector per channel” principle. But a common feature of both interfaces, in addition to the type of plug, is that they provide a balanced connection — a connection in a special format in which interference induced on the wire is extinguished directly in the wire. This allows long cable lengths to be used without compromising signal quality.

MIDI. Input for connecting MIDI devices: keyboards, turntables and other controllers. These inputs are found exclusively in audio interfaces (see "Type"). Recall that a MIDI stream is not a sound, but service information for virtual musical instruments. Therefore, data received through this input is not processed by the device, but simply transferred to a computer, tablet or specialized equipment via USB type B (see below), MIDI output (see "Outputs") or another similar connector.

— BNC. Coaxial connector with bayonet or threaded fixation. Most often used similarly to coaxial S / P-DIF — to receive a digital audio signal. It is mainly used in professional equipment, one of the advantages is the presence of a latch, which increases the reliability of the connection.

USB (type B). Connector for connecting to a computer as a peripheral device. It has a characteristic square shape, which is noticeably different from the well-known rectangular USB ports. And the methods of using such a connection can be different. So, traditional DACs (see "Type") when connected via USB Type B usually play the role of an external sound card and are used to output sound from a computer to headphones, speakers or other audio device. Audio interfaces, on the contrary, transmit the signal received from external sources to a computer for recording and processing.

— USB-C. The presence of a modern USB-C port for connecting to a PC or laptop. Like the USB port (type B), it can transmit a signal in two directions, depending on the type of device.

— IR control input. Connector for connecting a remote infrared receiver for the remote control. The role of such a receiver can be played either by a separate specialized device or by another component of the audio system that has an IR control output and is compatible with this remote control. The meaning of this function is that the DAC, after mounting all the components of the audio system, may end up in a place where the remote control “does not reach”. In this case, you can connect an external receiver to the device and send signals from the remote control to it, and the receiver will already transmit a signal to the controlled device.

Trigger. Service input used to control the power of the device. This input is connected to the trigger output of another audio system component (such as an amplifier), and when this component is turned on / off, the DAC will turn on and off at the same time. This makes life easier for the user, eliminating the need for "excessive movements" to turn the DAC on and off.

Outputs

Mini-Jack (3.5 mm). In this case, we mean a standard 3.5 mm mini-Jack jack used as a line output (headphone outputs that also use this connector are counted separately — see the relevant paragraph). In fact, such a connector is mainly used to connect some models of active speakers (it is especially popular in computer acoustics). In this case, two stereo channels are usually output through one mini-Jack connector at once.

Jack (6.35 mm). Analogue audio output. Being similar to the popular mini-Jack in design (and differing only in larger sizes), this connector has a fundamentally different application specifics. Firstly, Jack (TRS) plugs are used mainly in "serious" stationary audio equipment, including professional. Secondly, outputs of this type usually operate on a "one channel per plug" basis (i.e., for example, a stereo output consists of two jacks). Thirdly, this connector often provides a balanced connection — a connection in a special format that allows you to use long wires without compromising signal quality (due to the fact that the wire itself works as a noise filter). However, a 6.35 Jack connection can be unbalanced.

RCA. In this case, we are talking about an analogue linear audio output using RCA connectors (these connectors can also be used in other interfaces, but they have their own names). The standard output of this type co...nsists of two connectors — for the left and right stereo channels. This interface is one of the most popular in entry-level and mid-level stationary audio equipment.

XLR. Formally, XLR is the name of the plug type; however, when talking about XLR outputs, they usually mean a specific interface — an analogue line output with a balanced connection. Such a connection (with different connectors) is widely used in professional technology; it allows the use of long cable lengths without compromising signal quality, due to the fact that external interference is damped directly in the cable. Specifically, the XLR connector is notable for its high reliability, often in such connectors locks are provided for fixing the plugs. The signal to these outputs is fed on the principle of "one channel per connector", so the standard XLR output consists of two connectors — for the left and right stereo channels.

Coaxial S / P-DIF. Digital audio output, capable of transmitting multi-channel audio. It uses an RCA type connector, but the S/P-DIF outputs are fundamentally different from the RCA outputs (see the relevant paragraph) — firstly, by the type of signal (digital, not analogue), and secondly, by the number of connectors (in S / P- DIF one connector is responsible for all sound channels). In addition, a regular RCA cable for a coaxial interface is not suitable — you need to use a shielded wire.

Optical. Output for digital audio transmission (including multi-channel) via fibre optic cable. Such a connection is notable for its complete insensitivity to electrical interference, this is its main advantage over the coaxial S / P-DIF interface, which has similar capabilities. At the same time, optical fibre requires careful handling; a sharp bend or strong pressure can make such a cable unusable.

Balanced digital (AES / EBU). Digital audio output via XLR connector. This connector differs from the XLR outputs (see the relevant paragraph), firstly, by the signal format, and secondly, by the fact that in this case all sound channels are transmitted through one connector. AES/EBU uses a balanced connection; such a connection makes it possible to use even fairly long wires without compromising sound quality, since interference induced on the cable is automatically filtered when receiving a signal.

MIDI. Dedicated output for transmitting MIDI commands. It is found exclusively in audio interfaces (see "Type") that have a MIDI input (see above), and is used to transmit MIDI commands received by this input to an external device — most often a hardware sequencer or other specialized equipment.

— BNC. Coaxial connector, used primarily for digital audio transmission. It differs from the coaxial S / P-DIF (see above) not only in size, but also in the presence of a lock — bayonet or threaded — providing additional reliability of the connection.

Trigger. Service connector used to control the power of audio system components connected to the device. When the DAC is turned on, the trigger output sends a control signal to the corresponding input of the controlled device (for example, an amplifier), “waking up” it; shutdown works the same way. Thus, the user does not need to enable and disable each component of the system separately — it is enough to enable / disable only the DAC, the controlled components will “respond” automatically.