Dark mode
United Kingdom
Catalog   /   Home & Renovation   /   Security Systems   /   DVR & NVR Recorders

Comparison Hikvision DS-7716NI-I4/16P vs Hikvision DS-7716NI-I4

Add to comparison
Hikvision DS-7716NI-I4/16P
Hikvision DS-7716NI-I4
Hikvision DS-7716NI-I4/16PHikvision DS-7716NI-I4
from £479.95 
Expecting restock
from £406.66 
Outdated Product
TOP sellers
Typedigital NVRdigital NVR
Camera connection16 channels16 channels
Features
Features
PTZ
PTZ
Connectors
RCA audio output11
USB 2.022
USB 3.2 gen111
HDMI11
Max. HDMI resolution3840x2160 (4K)
VGA11
LAN12
Alarm input1616
Alarm output44
RS-485
RS-232
Video recording
Bandwidth160/256 Mbps160/256 Mbps
Resolution (all channels)1920x1080 px1920x1080 px
Video compression formatH.265, H.264, MPEG4H.265, H.264, MPEG4
Max. resolution (IP)8 MP (~3840x2160 px)8 MP (~3840x2160 px)
Drives
Number of SATA44
Max. total capacity24 TB24 TB
PoE power
PoE (output)802.3af/at
PoE outputs16
Power per PoE output30 W
Total PoE power200 W
General
Power supply100 – 240В100 – 240В
Power consumption300 W80 W
Operating temperature-10 °C ~ +55 °С-10 °C ~ +55 °С
Maximum humidity90 %90 %
Dimensions445x390x70 mm445x390x70 mm
Weight5 kg5 kg
Added to E-Catalognovember 2016november 2016

Max. HDMI resolution

Maximum HDMI resolution.

The maximum image resolution that can be output via HDMI to the screen of the connected video equipment (monitor, TV, etc.). The HDMI output on the DVR allows you to stream Full HD, 2K or 4K images for high quality multi-screen images.

LAN

The total number of LAN ports (RJ-45) provided in the design of the registrar for connecting to an external network.

LAN (RJ-45) is a standard computer network connector. In this case, they can be found both in traditional DVRs that work only with analog cameras, and in NVRs and HVRs. As a rule, the registrar is equipped with one port of this type, however, there are exception models with two or more ports.

Note that many NVRs are supplemented with RJ-45 connectors for connecting cameras and powering them using PoE. Since these ports are not intended for connection of the registrar with an external network, in this case they are not taken into account, but are indicated separately (see the corresponding paragraph).

PoE (output)

The PoE (Power over Ethernet) technology itself allows you to transmit not only data, but also energy to power network devices via an Ethernet network cable. And the presence of PoE output(s) makes it possible to power such devices from the network connectors of the recorder. This eliminates the need to lay additional wires or use independent power supplies, which can be especially important for some equipment, such as external IP surveillance cameras. And when using so-called splitters - devices that separate the PoE cable signal into purely network data and supply power - using such outputs you can also power equipment that does not initially support PoE (the main thing is that their power characteristics match the capabilities of the switch).

As for PoE standards, they determine not just the overall power supply, but also compatibility with specific devices: the consumer must support the same standard as the recorder, otherwise normal operation will be impossible. Nowadays, including in switch connectors, you can find two types of such standards - active ( 802.3af, 802.3at, 802.3bt) and passive (one is called that). The main difference between these varieties is that active PoE provides for matching the power source and load in terms of voltage and power; passive PoE does not have such functions, and energy is supplied “as is”, without adjustments. Here is a more detailed description of speci...fic standards:

- 802.3af. The oldest active PoE power format in use today. Provides power output power up to 15 W (at the consumer input - up to 13 W), output voltage 44 - 57 V (input - 37 - 57 V) and power in a pair of supply wires up to 350 mA. Despite its “venerable age”, it still continues to be widely used; so there are still quite a lot of recorders that work only with 802.3af on sale (as of the end of 2021). However, it is worth considering that this standard covers 4 so-called power classes (from 0 to 3), differing in the maximum number of watts at the output and input. So when using 802.3af, it doesn't hurt to make sure that the output power is sufficient for the selected load.

- 802.3af/at. A combination of two standards at once - the 802.3af described above and the newer 802.3at. The latter allows you to supply power up to 30 W to the output (up to 25.5 W at the input of the powered device), uses a voltage of 50 - 57 V (42.5 - 57 V at the input), while the power in a pair of wires does not exceed 600 mA. This combination is relatively inexpensive, but it makes it possible to power a wide variety of external devices; so at the end of 2021, it is this type of PoE output that is most popular among recorders.

— 802.3af/at, bt. A combination of 802.3af/at described above with the 802.3bt standard (PoE++, PoE type 3 or type 4). 802.3bt is the newest of the PoE power formats; Unlike earlier ones, it uses not 2, but 4 power wires, which allows you to supply very significant power to external devices - up to 71 V (with 90 W at the power output). Such capabilities can be indispensable when supplying energy to equipment with high consumption - for example, external surveillance cameras, supplemented by heating systems. On the other hand, support for the 802.3bt standard significantly affects the cost of the recorder, and such a connection places special demands on the quality of the cables. In addition, you need to keep in mind that this standard also includes the UPoE format, created by Cisco and used in its equipment; and this standard (it is known as PoE type 3) has a more modest power - up to 60 W at the output (up to 51 W at the consumer input). And the general 802.3bt standard includes two power classes - class 8, in which maximum performance is achieved, and class 7, where 75 W is supplied to the output and about 62 W reaches the consumer. So if you plan to use 802.3bt equipment, when choosing a recorder from this category, you must make sure that the power supply is sufficient for the normal operation of the connected devices.

- Passive. As already mentioned, the key difference between passive PoE and the active standards described above is that in this case the power output produces a strictly fixed power, without any automatic adjustments or adjustments for a specific device. The main advantage of this standard is its low cost: its implementation is much cheaper than active PoE, so such ports can be found even in entry-level recorders. On the other hand, the aforementioned lack of auto-tuning makes it much more difficult to coordinate equipment with each other - especially in light of the fact that different devices can differ significantly in the output/consumed voltage and power (power). Because of this, when using passive PoE, you need to pay special attention to the compatibility of the source and load in these parameters. If there is no match, then in the best case (if the voltage/power at the output is lower than required) the power simply will not work, and in the worst case (if there is excess voltage/power) there is a high probability of overloads, overheating and even breakdowns with fires - and such troubles may not occur immediately, but after quite a considerable time. And you definitely cannot connect devices with active inputs to passive PoE outputs - for the same reasons.

PoE outputs

Number of LAN ports (RJ45) with PoE support provided in the recorder design.

These connectors are intended for connecting IP cameras. And PoE technology makes it possible to supply power to such a camera directly via the connection cable, thus dispensing with a separate connection to an outlet and without batteries/accumulators. Of course, to use this technology, the camera connected to a similar port must also use it. Most often, the number of channels corresponds to the number of PoE outputs (this can be 4 outputs, 8 or even 16 ports). But there are always exceptions.

Power per PoE output

The maximum power that the DVR is capable of delivering per PoE output.

Such outputs are described in detail above; just briefly recall that they are Ethernet network ports, supplemented by the ability to power connected equipment directly over the LAN cable, without additional wires. As for the power of such a supply, it must correspond to the characteristics of the connected equipment; however, the term "compliant" may have different meanings depending on the PoE standard being used (see "PoE (output)").

So, if the registrar and the equipment work according to one of the active standards (802.3af, 802.3at, 802.3bt), the output power of the switch must not be lower than the power consumption of the connected equipment. At the same time, exceeding the output power is not scary — the described standards provide automatic adjustment, which allows the powered device to receive exactly as much power as needed, without overloading. But if the output is not powerful enough, it is obvious that it simply cannot provide effective work.

In turn, when using passive PoE, the output power of the power supply should ideally match the power consumption of the load as closely as possible. This is due to the fact that in such cases the power output produces a strictly defined power, with little or no matching and adjustment. And if the excess of a couple of watts, most powered devices are able to transfer more or less "calmly", then a more significant exces...s is fraught with overloads, overheating and equipment failure.

In conclusion, it should be said that if there are several PoE ports and they are used simultaneously, the available power supply per port can be noticeably less than when PoE is operating in only one connector. This point can be clarified by information on the total PoE power (see below) — this power is divided into all the ports involved. For example, if the switch has three PoE outputs, and the power per output is 60 W, then the total power can also be claimed at 60 W. Accordingly, when using PoE on all three outputs at once, the power on each of them will be less than 60/3 = 20 W. Technically, more advanced methods of power management are also possible — with "smart" power distribution depending on the needs of specific devices (relatively speaking, 30 W, 20 W and 10 W for the same total value of 60 W); but for a full guarantee, it is worth proceeding from the fact that all energy is divided equally.

Total PoE power

The total power that the NVR is capable of delivering to all PoE outputs.

See above for details on such exits; here we only recall that the general idea of PoE is to supply power over the same Ethernet cable that transmits data. The total power is given for models in which there are more than one such connectors; it allows you to estimate the total power consumption of all PoE devices that can be connected to the NVR at the same time.

There are two important things to keep in mind when choosing a specific value. First, when multiple ports operate, the energy is usually shared equally among them; at the same time, the total power of the registrar does not always correspond to the sum of the maximum powers of all PoE outputs. For example, a model with 8 ports of 30 W each may have a total figure of not 240 W (8 * 30 W), but only 100 W. In fact, this discrepancy means that with the simultaneous use of all connectors, each of them will be able to deliver not 30 W, but a maximum of 100/8 = 12.5 W. The second point is that the total power consumption of the load should ideally be no higher than 75% of the claimed total PoE power — this provides an additional guarantee in case of malfunctions.