Short body
Tape recorders with a
shortened body.
In this case, shortened means a case that has a shallower depth than classic radio tape recorders equipped with CD drives. Due to this, such models are quite compact, which, in particular, simplifies installation and facilitates wiring. Of course, CD / DVD discs are not supported in principle by such radio tape recorders, but this is not a serious drawback — nowadays there are quite enough alternatives to such media. Also note that the shortened layout does not affect the mounting size (see above) — it can be 1 DIN or 2 DIN, and standard solutions are even larger.
Media types
Media types supported by the car radio.
— CDs. Support for optical discs usually assumes at least
compatibility with CD, the ability to work
with DVD is somewhat less common . For more information about these types, see "Disk Types". Here we note that nowadays, disks are gradually being replaced by more compact and functional media — in particular, memory cards and USB devices; so many modern radio tape recorders, including high-end ones, do
not have optical drives at all.
—
Memory cards. Ability to work with removable memory cards, usually SD or microSD; the module for reading them is called a card reader. This feature is convenient primarily because such cards are supported by many other devices — in particular, laptops and photo / video cameras. The card reader facilitates the exchange of data between these devices: for example, a selection of music from a laptop can be written to a memory card. Note that the specific type of supported cards needs to be specified separately — the (micro)SD format includes several varieties that are not quite compatible with each other.
—
USB drive (front). The ability of the radio to work with external USB-drives — "
flash drives ",
hard drives,
MP3 players, etc. — to pla
...y content directly from them. In this case, it means connecting such media to the USB connector located on the front panel of the radio — it is convenient because the connector is in close proximity, right at hand.
— USB drive (rear). Connecting USB drives (see above) through the rear panel. However, the external device is connected not directly to the rear panel, but to an external USB connector, which, in turn, is connected to the rear panel with a cable. Such a connector does not take up space on the front panel, but you can place it on a shelf under the dashboard — and the connected drive will not stick out of the radio, but lie neatly on the shelf. But in standard radios (see above), the “rear” connection can be carried out a little differently — there the cable from the rear panel can be connected to the standard USB socket on the instrument panel using a special connector.
— Connecting an iPod/iPhone. The ability to connect portable devices from Apple to the radio — primarily iPods and iPhone smartphones — through a special docking connector. Even the simplest options for such a connection, in addition to playing music, provide a number of additional features — in particular, control of the player's functions (for example, switching a track) from the control panel or remote control of the radio itself. And the most advanced models have a proprietary CarPlay system; for more information about it, see "Control functions".
— Android connection. The ability to connect smartphones and other devices based on the Android operating system to the radio. Connection methods may vary: for example, some radio models support only a wired connection, others can use Bluetooth (see "Multimedia"). The same applies to the set of functions available in each case, this point should be clarified according to the manufacturer's official data. Specific features include direct playback of music from the phone (with control through the radio), working with the contents of its drive, watching videos, using the radio as a car kit for receiving calls, etc. And in high-end models, there is support for Android Auto smartphone integration technology; for more information about it, see "Control functions".DSP
The presence in the radio built-in
DSP — digital sound processor.
Such a processor improves the overall sound quality and provides additional options for its adjustment. One of the most important DSP functions is time correction: it allows you to adjust the acoustics so that the sound from speakers located at different distances from the user reaches it at the same time. Such coordination significantly improves the impression of the sound. In addition, radios with DSP necessarily have a digital crossover (frequency separation) and an equalizer with a fairly large number of bands.
The presence of a processor significantly affects the price of the radio, but in most cases this is a justified payment for the sound quality. But the unequivocal disadvantage of "processor" models is the difficulty in installation and configuration, for this it is best to contact a specialist.
Line out
The number of line outputs (see above) provided in the design of the radio. It should be noted that usually these outputs use RCA connectors (“tulip”), and the analog format allows only one audio channel to be transmitted through one such. Therefore, to work with a stereo signal,
two RCA connectors are required, and just a pair of such jacks is considered to be one line output - a set designed for one set of stereo speakers. The main difference between this interface and the same RCA used to connect speakers (see above) is that the line output receives a signal from a preamplifier that is unsuitable for feeding to passive acoustics. Such a signal must be sent to active speakers or an external amplifier (whereas the speaker is connected to the output of a power amplifier designed for passive speakers).
Tuner bands
— FM. This term refers to the part of the ultra-short wave (VHF) range ranging from 87.5 MHz to 108 MHz. It uses frequency modulation, which allows you to broadcast music in stereo with a fairly high sound quality, as well as transmit RDS signals (see RDS support). At the moment, most music radio stations in the CIS are broadcasting in this range. The disadvantage of FM is the limited reception area — a maximum of several tens of kilometers from the broadcasting station — so they can usually be listened to within the same city and surrounding areas.
— AM (English amplitude modulation — amplitude modulation) — broadcasting using amplitude modulation. It can be carried out in different bands, but most commercial broadcasts are carried out on medium waves in the range of 520-1610 kHz; most consumer AM receivers, including those in car radios, are designed for the same frequencies. AM broadcasting has a much longer reception range than FM (it can be hundreds of kilometers), but the sound quality is lower, so this format is broadcast mainly by “talk” and news radio stations.
— LW (English long wave) — broadcasting on long waves in the range of 148-408 kHz. Such broadcasting has a reception range of hundreds and even thousands of kilometers, and is almost independent of the time of day and atmospheric interference. It is used mainly at stations of national importance.
— MW (English medium wave) — broadcasting on medium waves in the range of 522-1...720 kHz, in fact — the same as AM (see above).
— SW (English short wave) — broadcasting on short waves, is carried out in a whole set of bands, the lower limit of which is at the level of 2.5 MHz, and the highest — 26.1 MHz. The features of the propagation of short waves are such that they can be received on the opposite side of the globe, but it is not always possible to hear within a few tens of kilometers from the transmitter. Therefore, shortwave broadcasting is mainly used for foreign broadcasts.
— VHF. In this case, not the entire VHF band is meant, but the sub-band 65.9-74 MHz, using the so-called OIRT modulation. In this format, VHF broadcasting was originally conducted in the countries of the Soviet Union and Eastern Europe, but at the moment it is not very popular due to the development of FM. VHF OIRT is technically similar to FM (see above); the main differences are the bandwidth occupied and the inability to transmit RDS signals in OIRT (see RDS support).
Illumination colour selection
The ability
to choose the backlight colour for the control panel, and sometimes also for the radio display. The specific range of shades available can vary, whether it be a few colours or the entire
RGB palette; see "Illumination colour" for details. Anyway, this feature does not play a functional role, however, it allows you to customize the appearance of the device so that it is in harmony with the appearance of the dashboard and matches the user's mood.
Backlight
The colour of the backlight plays primarily an aesthetic role, allowing you to choose a radio for the design of the dashboard and user preferences. In addition, some colours have a practical meaning. So, the
red backlight is extremely popular nowadays also because it is almost perfect for the dark time of the day: this shade does not knock down "night vision" and has a stimulating effect on the nervous system. And
green, on the contrary, relieves excessive nervousness and promotes peace of mind. Other popular colours in modern times include
white,
blue,
orange,
yellow,
purple ; they do not have such pronounced effects, here the main selection criterion is “like or dislike”.
Also note that in many models several backlight colours are indicated at once. This means that the device has a backlight with adjustable colour selection. At the same time, there are models with a choice of a full range of RGB colours.