United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Chargers for Gadgets

Comparison Xiaomi 65W GaN 1A1C vs Xiaomi Mi 65W Fast Charger with GaN Tech

Add to comparison
Xiaomi 65W GaN 1A1C
Xiaomi Mi 65W Fast Charger with GaN Tech
Xiaomi 65W GaN 1A1CXiaomi Mi 65W Fast Charger with GaN Tech
Compare prices 2
from £19.99 
Expecting restock
TOP sellers
Main
Charging power - 65 W. Compact size due to the use of GaN (gallium nitrite) in the device design. Power Delivery Certification. Multi-level protection system.
TypeGaN chargerGaN charger
USB A ports1
USB-C ports11
Charge current5 A3.25 A
Power (with 1 device)65 W65 W
Power (for all ports)60 W
Fast charge
 
Power Delivery
Cable includedUSB - USB CUSB C - USB C
Cable length1 m
Materialplastic
Dimensions82x32x31 mm56x31x31 mm
Weight150 g
Color
Added to E-Catalogjune 2023december 2020

USB A ports

The number of USB connectors in the design of the device. We emphasize that here we are talking only about classic, full-size connectors — the so-called USB A; the number of USB-C ports, if any, is specified separately (see below).

The number of USB ports (of any type) corresponds to the number of gadgets that can be simultaneously connected to the charger using adapter cables or plugs for the appropriate connector. Note that not all chargers are capable of delivering full power to all charging outputs at once; see "Charge current" for details. As for the specific number of ports (USB A and/or USB-C), nowadays, relatively simple chargers for 1 port or 2 ports are the most popular. This is due to the fact that separate chargers are usually purchased for one or two specific gadgets, and a larger number of charging outputs is required relatively rarely. However, on the market you can easily find models with 3 ports or 4 ports ; and the most “multi-charged” modern devices have 5 or 6 USB ports or even more.

Charge current

The maximum current that the device is capable of delivering to the charging output. This is one of the key parameters for any charger, it directly determines its power and, accordingly, its efficiency with certain batteries. These points are described in detail in the “Power” paragraph below, but here we note that if several values are indicated in this paragraph, it means that the design provides for several connectors with different current specs (or several groups of connectors, each with its own amount of amperes per port) .

As for specific numbers, when charging from USB (used in most modern chargers), the maximum current up to 1 A is considered very limited, 1.5 A is low, 2 A, 2.1 A and 2.4 A are average values, and in the most powerful chargers, this figure can be 3 A, 3.4 A and even 5 A.

Power (for all ports)

The total power provided by the device while simultaneously charging the maximum possible number of gadgets. This parameter is indicated only for models that can work with several gadgets; for a 1-socket charger or a wireless platform, the operating power is given in the “Power per 1 device” paragraph.

When evaluating this parameter, two points should be taken into account. First, when the charger is fully loaded, the power of each individual port and/or wireless platform may be lower than the maximum possible value. For example, some models with 2 USB ports for 2 A and 1 A (10 W and 5 W), with simultaneous operation of both ports, can output only 5 W each, that is, only 10 W in total (this is the number and indicated in this paragraph). Secondly, the distribution of power over individual connectors can be different — depending on the current on each port and supported fast charging technologies; these nuances are best specified in the official documentation.

Fast charge

Fast charging technology supported by the device.

By itself, fast charging, as the name suggests, reduces the charging time compared to the standard procedure. For this, increased voltage and/or current power is used, as well as a special smart process control. But the possibilities and features of such charging may be different, depending on the specific technology used in the device. The same technology must be supported by the charger too — this is the only way to 100% guarantee correct operation. However some types of fast charging are mutually compatible — this point should be clarified separately, and compatibility is not always full.

Nowadays, the following technologies are most widely used: Quick Charge of different versions (3.0, 4.0, 5.0), Power Delivery (version 3.0 and 3.1), Pump Express, Samsung Adaptive Fast Charging, Huawei Fast Charge Protocol, Huawei SuperCharge Protocol, OPPO VOOC, OnePlus Dash Charge. Here is a brief description of each of them:

— Quick Charge (1.0, 2.0, 3.0, 4.0, 5.0). Technology created by Qualcomm and used in gadgets with Qua...lcomm CPUs. The later the version, the more perfect the technology: for example, Quick Charge 2.0 has 3 fixed voltage options, and version 3.0 has a smooth adjustment in the range from 3.6 to 20 V. Most often, gadgets with a newer version of Quick Charge are compatible with more old charging devices, but for full use, an exact match in versions is desirable.
Also note that certain versions of Quick Charge have become the basis for some other technologies. However, the mutual compatibility of chargers and gadgets with support for these technologies needs to be clarified separately.

— Pump Express. Own development of MediaTek, used in portable devices with CPUs of this brand. Also available in several versions, with improvements and additions as it develops.

— Power delivery. Native fast charging technology for the USB-C connector. Used by many brands, found mainly in chargers and gadgets equipped with this type of connector. Presented in several versions.

— Samsung Adaptive Fast Charging. Samsung's proprietary fast charging technology. It has been used without any changes since 2015, so it looks rather modest compared to newer standards. Nevertheless, it is able to provide good speed, especially in the first 50% of the charge.

— Huawei FastCharge Protocol. One of Huawei's proprietary technologies. Formally similar to Quick Charge 2.0, but used with both Qualcomm and other brands of mobile CPUs, so compatibility is not guaranteed. In general, it is considered obsolete, gradually being replaced by more advanced standards like the SuperCharge Protocol.

— Huawei SuperCharge Protocol. Another proprietary technology from Huawei introduced in 2016; for 2021 is available in several versions. In some devices, the power of such charging exceeds 60 V — not a record, but a very solid indicator.

— Oppo VOOC. OPPO technology, used both in branded smartphones and in products from other brands. Available in several versions; The latest (for 2021) version of SuperVOOC is for 2-cell batteries and is sometimes listed as a separate technology called Oppo SuperVOOC Flash Charge.

— OnePlus Dash Charge. A relatively old proprietary standard from OnePlus. An interesting feature is that in some gadgets, the effectiveness of Dash Charge is practically independent of the use of the screen: when the display is on, the battery charges at almost the same rate as when it is off. Technically a licensed version of OPPO's VOOC, however, these technologies are not compatible. Since 2018, Dash Charge has been phased out by Warp Charge, but this newer technology is rarely used in separately sold chargers.

In addition, on the market you can find chargers that support rarer and more specific formats of work; the features of these formats can be clarified by special sources.

Cable included

The presence of a cable in the delivery kit of the charger, or any other specific type of included cable.

The presence of a cable is indicated mainly for wireless devices (see “Type”) — in such cases, we are talking about the power cable of the charger itself. For wired models, the type of connectors on the stock wire (s) for charging gadgets is usually specified. At the same time, the USB port is used by default to connect to the charger itself, so this plug may not be mentioned in the description of the wire. On the other hand, there may be such connectors:

USB-C. A miniature version of the USB connector, gradually replacing microUSB in modern portable devices. It has a convenient reversible plug design, and can also provide some advanced power options not available with microUSB. Also note that USB-C can be used in a cable not only to connect to a gadget, but also to connect to the charger itself (along with traditional USB); so on the market you can find corresponding cables like "USB-C — microUSB", "USB-C — Lightning", etc.

microUSB. Universal connector, extremely popular in portable gadgets of various types; only relatively recently has it begun to give way to the more advanced USB-C (which differs from it in its one-sided design and lower power supply).

Lightning. Universal connector, used e...xclusively in portable Apple devices. Like USB-C, it has a two-way layout, but a slightly different design.

Cable length

The length of the cable supplied with or included with the charger. For wireless models, the length of the power cable of the charger itself is indicated here, for wired models, the length of the cord for charging gadgets

Anyway, a longer cable gives more freedom of movement, but it creates inconvenience for short distances. Also note that charging is supposed to be used in the immediate vicinity of sockets, so wires longer than 2 m are practically not found among such devices. A length of more than 1.5 m is considered significant, from 1 to 1.5 m — medium, from 0.5 to 1 m — small, and in some models there are wires shorter than 0.5 m.
Xiaomi 65W GaN 1A1C often compared