United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   CD Players

Comparison Denon DCD-A110 vs Yamaha CD-S3000

Add to comparison
Denon DCD-A110
Yamaha CD-S3000
Denon DCD-A110Yamaha CD-S3000
from £2,099.00 
Outdated Product
from £3,699.95 
Outdated Product
TOP sellers
Featureshomehome
Design
DACPCM1795ESS Technology ES9018
Disc loadfrontalfrontal
Communications
Playback
CD-Audio
SACD
CD-Audio
SACD
Audio formats supportMP3, WMA
Interfaces
 
USB (type B)
Tech specs
DAC sample rate44 kHz
DAC bit depth32 bit
Frequency range2 – 100000 Hz
2 – 50000 Hz /SACD - 3 дБ/
Signal to noise ratio122 dB
116 dB /SACD/
Dynamic range118 dB110 dB
Harmonic distortion0.0005 %0.002 %
Connection
Outputs
Coaxial S/P-DIF
Optical
Control output (IR)
Coaxial S/P-DIF
Optical
Control output (IR)
RCA1 pair(s)1 pair(s)
XLR1 pair(s)
Inputs
 
 
Control input (IR)
Coaxial S/P-DIF
Optical
Control input (IR)
General
Power consumption42 W30 W
Pure Direct
Remote control
Dimensions (WxDxH)344x405x138 mm435х440х142 mm
Weight17 kg19.2 kg
Color
Added to E-Catalogmay 2021april 2015

DAC

The model of the digital-to-analogue converter (DAC) installed in the CD player.

The DAC is one of the most important components of any modern CD player. It is this module that is responsible for converting digital data recorded on an optical disc into an analogue audio signal that is fed to an external device (amplifier, speakers, etc.). Accordingly, the characteristics and overall quality of the DAC largely determine the sound quality in general. Knowing the DAC model, you can find detailed data on it — characteristics, reviews, test results, etc. — and evaluate how the capabilities of the converter meet your requirements.

Audio formats support

The audio file formats that the player can handle. This list includes popular formats MP3, WMA, AAC, OGG, WAV, FLAC, but is not exhaustive.

MP3. The most famous of modern digital audio formats; supported by almost all devices. Provides so-called. lossy compression, where some of the audio frequencies are lost. However, during compression, the sound is processed in such a way that it "disappears" mainly frequencies, the loss of which is imperceptible to the human ear.

WMA. An audio format that was once specially created for the Windows operating system. The default is lossy compression. WMA is especially suitable for low bitrates, under such conditions it provides better quality than MP3 and takes up less space. On the other hand, in high-quality digital audio, this format is much less popular.

WAV. Another popular audio standard, originally developed for storing sound on a PC. It can technically be used to store audio in a variety of formats, but is most commonly used for uncompressed audio. Due to this, the sound quality can be quite high, and its processing does not require special computing power. The downside of this is the large volume of audio files — many times more than MP3s.

AAC. A format d...eveloped as a potential successor to MP3. Also provides lossy compression (see above), but allows you to achieve better quality with the same file size; this difference is especially noticeable at low bitrates. Actively promoted by Apple; nevertheless, it is noticeably inferior to MP3 in terms of prevalence.

OGG. A lossy compressed digital audio format is one potential alternative to MP3. One of the key features of OGG is that as audio is encoded, the bitrate is constantly changing; at the same time, on fragments where there is no sound, the bitrate drops to almost zero (unlike MP3, where the data stream is constant, including in sections of complete silence). This allows you to achieve small file sizes while maintaining sound quality. Also note that the OGG format is open and not limited by patents.

FLAC. One of the formats that uses lossless audio compression. With this compression, all the details of the original sound are preserved, so lossless formats are especially appreciated by sophisticated music lovers and audiophiles. The reverse side of this quality is large volumes of files. Specifically, FLAC is perhaps the most common of today's lossless formats. This is largely due to the fact that this standard is not particularly demanding on the processing power of the player. Thanks to this, its support can be implemented even in relatively simple and inexpensive players (unlike another popular format — APE, see below). On the other hand, FLAC files are larger than APE files.

A.P.E. One of the popular lossless audio compression formats. Compared to another common standard — FLAC (see above) — APE allows you to achieve smaller file sizes with the same quality. On the other hand, to play such files, electronics with a fairly high processing power are required, so APE compatibility is relatively rare in compact players.

This list

Interfaces

Wired and wireless interfaces for connecting external devices provided in the design of the CD player.

Airplay. A technology for transmitting multimedia data over a Wi-Fi wireless connection (see below). Developed by Apple and widely used in its portable devices, in particular the iPod touch, iPhone and iPad, but is also available for equipment from other manufacturers. Allows you to broadcast audio files to compatible devices (in streaming audio mode, see "Playback" for details), as well as images, text data, and even video. The presence of AirPlay in a CD player will make it possible to connect devices supporting this technology to it for direct playback, as well as display information about files — song title, artist name, etc.

Wi-Fi. A wireless interface that can be used for two purposes: connection to computer networks (including the Internet) and direct connection with smartphones, tablets and other external equipment. The first option is convenient for implementing network functions — streaming audio, Internet radio(see "Playback"), AirPlay (see above), DLNA(see below). Connection to computer networks can also be carried out through a wired LAN interface (see below), however, Wi-Fi is more convenient due to the lack of wires and the ability to wor...k through obstacles (including walls) at a distance of several tens of metres. And connection with external devices can be provided primarily for remote control of the player.

— Bluetooth. A wireless technology developed for the direct communication of various devices with each other. Provides a distance of up to 10 m (in specific cases — and more, but this option is not relevant for CD players). Specific Bluetooth capabilities may vary depending on the protocols supported by the device. In the case of players, this function is usually used to broadcast audio to wireless headphones or Bluetooth speakers; this connection is convenient due to the absence of a wire, but the sound quality can be noticeably lower than with a wired connection. The reverse option may also be provided — broadcasting sound from a smartphone, tablet, etc. for playback through the player and acoustics connected to it; but this application, like others, is extremely rare.

— LAN. A standard interface used for wired connection to computer networks — both to "local computers" (with or without Internet access), and directly to Internet providers. Accordingly, the presence of such a connector in a CD player implies support for network functions — for example, DLNA or Internet radio (see "Communications"); specific networking capabilities vary by model.

— RS-232. It's a COM port. A specialized connector used to connect the player to a computer and control its settings from a PC. Such control can be more diverse and at the same time simpler and clearer than working with a standard panel or remote control.

— DLNA. A technology used to connect various electronic devices into a single digital network with the ability to directly exchange content. Devices for which support of this standard is claimed are able to interact effectively regardless of the manufacturer. A DLNA CD player can, for example, play music from a computer hard drive in the next room. Connection to the Network can be carried out both wired (LAN) and wireless (Wi-Fi) way; both options are described above.

— USB (type A). This connector is used to connect various USB peripherals to the device. In the case of CD players, we are most often talking about "flash drives" and other external drives: when they are connected to USB Type A, direct playback of the content recorded on such a drive is possible. Usually, this connector is installed on the front panel of the player, and some models of connectors may have more than one.

— USB (type B). This interface allows you to connect a CD player to your computer as a peripheral device. Such a connection can provide a wide variety of possibilities: playback of sound from a PC through the player and acoustics connected to it, control of the player's settings through the service programme, firmware updates, etc. (the specific set of capabilities depends on the model).

— Card reader. A slot for reading memory cards — most often the most popular modern SD format, although theoretically other options can be provided. This feature allows you to play music directly from memory cards. Such media are convenient because card readers are installed in almost all modern laptops, many tablets, smartphones (albeit for smaller cards), etc. However it must be borne in mind that even among SD cards there are several generations that are incompatible with each other; therefore, before using a card reader, you should definitely clarify which cards it is designed for.

— Connecting an iPod/iPhone. The presence in the CD player of special functions for working with portable Apple devices — iPod players, iPhone smartphones, and in most cases — iPad tablets. Such functions may include, for example, switching tracks on the player and managing playlists from the player's remote control; anyway, they make life much easier for those who would like to listen to music from the "apple" technology. Note that in the case of CD players, to connect such equipment, it is usually not a special dock that is used, but a regular general-purpose USB type A port (see above), with which the device is connected via a special cable. Occasionally there are models equipped with external docking stations (which, however, are most often also connected via USB).

DAC sample rate

Sampling frequency of a digital-to-analogue converter (DAC) installed in a CD player.

A DAC is an indispensable element of any system designed to reproduce digital sound. Such a converter is an electronic module that translates sound information into analogue pulses fed to speakers through amplification stages. The technical features of such a conversion are such that the higher the sampling rate, the better the signal at the output of the DAC, the less it is distorted during conversion. And in the case of CD players, this indicator must also be no lower than the sampling rate of the reproduced digital sound — otherwise the device simply will not be able to "digest" digital data from the media. So, an indicator of 92 – 96 kHz allows you to listen to CD-Audio (sampling frequency 44.1 kHz), but for DVD you need at least 192 kHz. In the most advanced DACs, the sampling rate can be 384 kHz. The latter, however, is rare: in most cases, high frequency is not critical, and such electronics are expensive.

DAC bit depth

Another indicator that determines the overall quality of the digital-to-analogue audio signal converter. For details on the converter, see "DAC Sampling Rate"; here we note that the bit depth is standardly expressed in bits, and the higher it is, the more accurately the signal at the output of the DAC corresponds to the original signal and the less distortion is introduced into it. In the case of CD players, 24 bits is considered the minimum necessary and at the same time quite sufficient; higher values — 32 bits — are rare, only in premium-level equipment.

Frequency range

The range of audio frequencies that a CD player can reproduce. In general, this parameter determines how full the output bandwidth is, whether too high or too low sound is cut off. However, it is worth noting here that the human ear is able to perceive sound only within the range of 16 – 20,000 Hz (deviations from the upper threshold in different directions are possible, but small, and it decreases with age). All modern CD players cover this range, therefore, in the case of such devices, the sound frequency indicators are reference and practically do not affect the sound. And impressive numbers like 2 – 40,000 Hz, 5 – 60,000 Hz, etc. — this is a kind of "side effect" of the design of a high-quality device; manufacturers use these numbers for marketing purposes, but again, they do not affect sound quality. Also, do not forget that actually audible frequencies are also limited by the characteristics of the speaker system, external amplifier and other equipment connected to the CD player. For example, speakers with a lower frequency range of 150 Hz will “cut off” all lower frequencies, and it doesn’t matter what the lowest bass the player can produce is 16 Hz, 20 Hz or 50 Hz.

Signal to noise ratio

The ratio between the level of the useful signal and the level of extraneous noise at the output of the player.

This indicator describes the total amount of extraneous noise (of any origin) that affects the sound quality: the higher the signal-to-noise ratio, the less such noise and the clearer the sound, which is especially important for Hi-Fi and Hi-End systems. The minimum indicator for CD players is 85 – 90 dB, indicators up to 100 dB can be considered good, up to 110 dB — good, more than 110 dB — excellent.

Dynamic range

The dynamic range of a CD player.

Technically, dynamic range is the logarithm of the ratio between the maximum input signal at which the level of distortion is low enough (tolerable) and the sensitivity of the amplifier. In a simplified way, this parameter can be described as the difference between the minimum and maximum sound levels that the device is capable of reproducing with high quality. The higher the dynamic range value, the better the device handles with sound that has significant volume differences, such as orchestral parts.

Note that when playing different sound standards (see "Playback"), the dynamic range of the player will also be different — for example, for SACD its value is usually much higher than for Audio CD. CD players typically list the highest value that gives the best impression of the device's performance. However, manufacturers often specify for which type of digital audio the dynamic range data is given.

Harmonic distortion

The coefficient of harmonic distortion (harmonics) output by the CD player.

This parameter, along with the signal-to-noise ratio described above, characterizes the overall sound quality of the player. It is calculated by dividing the total sum of harmonics by the value of the main signal at a reproduced sound frequency of 1 kHz, and is expressed as a percentage. Significant levels of harmonics lead to deterioration in sound — from a general feeling of "roughness" and "excessive density" of the sound to the appearance of clearly audible noise; accordingly, the lower the harmonic distortion, the better. In relatively inexpensive CD players, this figure is measured in tenths of a percent, in top models it may not exceed several thousandths of a percent.
Denon DCD-A110 often compared
Yamaha CD-S3000 often compared