United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Air Conditioners

Comparison Cooper&Hunter Arctic CH-S09FTXLA2-NG 27 m² vs Cooper&Hunter Arctic NG CH-S09FTXLA-NG 27 m²

Add to comparison
Cooper&Hunter Arctic CH-S09FTXLA2-NG 27 m²
Cooper&Hunter Arctic NG CH-S09FTXLA-NG 27 m²
Cooper&Hunter Arctic CH-S09FTXLA2-NG 27 m²Cooper&Hunter Arctic NG CH-S09FTXLA-NG 27 m²
Outdated ProductOutdated Product
TOP sellers
Main
Built-in Wi-Fi. The emergency heating function allows you to maintain the minimum required temperature in the room during the absence of residents.
Typesplit systemsplit system
Installationwallwall
Nominal capacity BTU90009000
Recommended room area27 m²27 m²
In box
indoor unit
outdoor unit
indoor unit
outdoor unit
Features
Modes and programs
cooling, heating, dehumidification, ventilation
automode
night mode
emergency heating /+8 °C/
self-cleaning
cooling, heating, dehumidification, ventilation
automode
night mode
emergency heating
self-cleaning
Functions
inverter compressor
timer
auto restart
vertical blinds drive
self-diagnosis
control via smartphone
I Feel (remote with temperature sensor)
inverter compressor
timer
auto restart
vertical blinds drive
self-diagnosis
control via smartphone
I Feel (remote with temperature sensor)
Filters
ionizer
CH 7-SKY Technology /system of 7 filters/
ionizer
CH 7-SKY Technology
Performance
Power consumption (cooling/heating)700/695 W610/610 W
Cooling capacity2700 W2700 W
Heating capacity3000 W2800 W
Air flow610 m³/h560 m³/h
Dehumidification1.69 L/h0.8 L/h
Noise level (max/min)38/25 dB
37/22 dB /outdoor unit - 50 dB/
Refrigerant typeR32R32
Efficiency
Seasonal cooling SEER7.56.8
Seasonal heating SCOP5.35.1
Energy efficiency EER (cooling)A
Energy efficiency COP (heating)A
Energy efficiency SEER (cooling)A++A++
Energy efficiency SCOP (heating)A+++A+++
Min. T for cooling mode-15 °C-15 °C
Maximum T for cooling mode50 °C48 °C
Min. T for heating mode-25 °C-25 °C
General specs
Displayhiddenhidden
CompressorDaikin
Maximum height difference between units10 m10 m
Maximum pipe length15 m15 m
Indoor unit dimensions (WxHxD)894x291x211 mm790x275x200 mm
Dimensions of window/outdoor unit (WxHxD)732x555x330 mm776x540x320 mm
Indoor unit weight11 kg9 kg
Outdoor unit weight23.5 kg27.5 kg
Color
Added to E-Catalogfebruary 2022october 2018

Power consumption (cooling/heating)

Power consumption of the air conditioner in cooling and heating mode; for models without a heating mode, only one number is given. This parameter should not be confused with the effective capacity of the air conditioner. Effective capacity is the amount of heat that the unit can "pump" into the environment or the room. This item also indicates the amount of electricity consumed by the device from the network.

In all air conditioners, the power consumption is several times lower than the effective capacity. It is due to the peculiarities of the operation of such units. At the same time, devices with the same efficiency may differ in power consumption. In such cases, the more economical models usually cost more, but with continued use, the difference can quickly pay off with less electricity consumption.

Also, two points related to electrical engineering depend on this nuance. Firstly, power consumption affects power requirements: models up to 3 – 3.5 kW can be connected to a regular outlet, while higher power consumption requires a three-phase connection (see below). Secondly, the power consumption is needed to calculate the load on the mains and the necessary parameters of additional equipment: stabilizers, emergency generators, uninterruptible power supplies, etc.

Heating capacity

The power provided by the air conditioner in heating mode. It is indicated by the amount of thermal energy that the air conditioner can "pump" from the external environment into the room when operating in this mode. The most modest modern units have a heating capacity of 2 – 3 kW or even less, in the most performant it reaches 6 – 8 kW or more.

When evaluating this capacity, the same formulas are relevant that are used in calculating the power of traditional heating. So, for the full heating of an ordinary residential or office space (with ceilings of 2.5-3 m and normal thermal insulation), a thermal power of at least 100 W is required. There are more detailed calculation rules that allow you to calculate the necessary characteristics for other conditions. And if we are talking about a separately sold outdoor unit (see "In box"), then the meaning of this parameter is somewhat different. It indicates the maximum power of the indoor unit that can be connected to this outdoor unit to work in heating mode. For multi split systems, respectively, the total capacity of all indoor units is taken into account.

Recall that most air conditioners are not designed for use as full-fledged heating systems. However, such a unit can be a good addition to the main heating system. At the same time, air conditioners are less expensive than el...ectric heaters: the heater has an effective power equal to energy consumption, and the air conditioner consumes much less energy than it supplies to the heated room.

Also note that the unit BTU (more precisely, BTU/hour) can also be used to indicate the effective capacity (including in heating mode). 1 BTU (BTU/h) initially corresponds to 0.293 W, and the numbers in the characteristics of air conditioners correspond to thousands of BTU/h. For example, a 7 BTU air conditioner will produce an effective capacity of 7000 BTU/h, or about 2 kW. Such marking is convenient because BTU can easily determine the recommended area of a standard room (in m2): just multiply the figure indicated in the characteristics by 3. So, in our example, the power of 7 BTU will correspond to an area of 7*3=21 m2.

Air flow

The amount of air that an air conditioner can pass through itself in an hour.

This parameter depends on the power and the overall level of the device, but there is no strict dependence here: models with the same effective capacity may differ in air circulation speed. In such cases, it is worth proceeding from the fact that a higher speed contributes to uniform cooling/heating of the air and reduces the time required to create a given microclimate; on the other hand, higher-performing air conditioners use more energy, are larger and/or cost more.

Dehumidification

The rate at which moisture is removed from the air when the air conditioner is operating for dehumidification.

The amount of excess moisture that accumulates in the air depends on several parameters. There are special formulas and even calculator programmes that allow you to calculate this amount for a particular situation. These calculation methods can be found in special sources. It should also be said here that air conditioners are not full-fledged dehumidifiers, so their performance in this mode is generally low.

Noise level (max/min)

The maximum and minimum level of noise produced by the air conditioner during operation; for split and multi split systems (see "Type"), by default, it is indicated for the indoor unit, and the data for the outdoor unit can be specified in the notes.

The noise level is indicated in decibels; this is a non-linear unit, so it is easiest to evaluate this parameter using comparative tables — they can be found in special sources. Here we note that, according to sanitary standards, the maximum level of constant noise for residential premises is 40 dB during the day and 30 dB at night; for offices, this figure is 50 dB, and in industrial premises higher volume levels may be allowed. So it is worth choosing an air conditioner according to this indicator, taking into account where and how it is planned to use it.

As for specific numbers, among the quietest modern air conditioners, there are models with a minimum performance of 23 – 24 dB, 22 – 21 dB, and sometimes even 20 dB or less. However, units at 31 – 31 dB and 33 – 34 dB are not uncommon; such loudness, usually, does not create discomfort in the daytime, but at night it is no longer desirable. However, in some cases, a louder air conditioner may be the best choice: noise reduction affects the cost, sometimes quite noticeably, and if the device...is not planned to be turned on at night, you can not overpay for additional noise reduction.

Seasonal cooling SEER

The seasonal SEER cooling factor provided by the air conditioner.

The meaning of this parameter is similar to the cooling coefficient — EER (see above): we are talking about the ratio of useful power to spend, and the higher the coefficient, the more efficient the device is. The difference between these parameters lies in the measurement method: EER is measured for strictly standard conditions (outside temperature +35 °C, workload 100%), while SEER is closer to reality — it takes into account seasonal temperature fluctuations (for Europe) and some other specific points, such as the increased efficiency of inverter compressors. Therefore, since 2013, it is customary to use SEER as the main parameter in the EU; this parameter was also adopted for air conditioners supplied to other countries with a similar climate.

Seasonal heating SCOP

Seasonal heating coefficient SCOP provided by the air conditioner.

Like the COP (see above), this parameter describes the overall efficiency of the air conditioner in heating operation and is calculated by the formula: thermal (useful) power divided by electricity consumption. The higher the coefficient, the more efficient the device, respectively. And the difference between COP and SCOP is that COP is measured under strictly standard conditions (outside temperature +7 °C, full workload), and SCOP takes into account seasonal temperature fluctuations (for Europe), changes in air conditioner operating modes, the presence of an inverter and some other options. Thanks to this, SCOP is closer to real indicators, and since 2013 this coefficient has been taken as the main one in the territory of the European Union. However, this parameter is also used for air conditioners supplied to other countries with a similar climate.

Energy efficiency EER (cooling)

The general energy efficiency class that the air conditioner complies with in cooling mode.

This parameter is indicated by letters from A (highest efficiency) and beyond. It is directly related to the value of the EER factor (see "Cooling EER"): each energy efficiency class corresponds to a certain range of factors (for example, B — from 3.0 to 3.2). Specific coefficient values for each class can be found in special tables; here we note that more efficient air conditioners are more expensive, but this difference can pay off due to less electricity consumption.

Energy efficiency COP (heating)

The general energy efficiency class that the air conditioner corresponds to when operating in heating.

This parameter is indicated by letters from A (highest efficiency) and beyond. It is directly related to the value of the COP coefficient (see "Heating COP"): each energy efficiency class corresponds to a certain range of coefficients (for example, C — from 3.2 to 3.4). Specific coefficient values for each class can be found in special tables; here we note that more efficient air conditioners are more expensive, but this difference can pay off due to less electricity consumption.
Cooper&Hunter Arctic CH-S09FTXLA2-NG often compared
Cooper&Hunter Arctic NG CH-S09FTXLA-NG often compared