Dark mode
United Kingdom
Catalog   /   Large Appliances   /   Vacuum Cleaners

Comparison Dreame Bot W10 Pro vs Dreame L10s Ultra

Add to comparison
Dreame Bot W10 Pro
Dreame L10s Ultra
Dreame Bot W10 ProDreame L10s Ultra
Compare prices 2Compare prices 3
TOP sellers
Main
Two rotating wipes for wet cleaning. Charging station with system for cleaning and wetting wipes.
The self-cleaning station does not empty the dust bin.
Charging station with dust collector and pad washing system.
Typerobot vacuum cleanerrobot vacuum cleaner
Cleaning typedry and wetdry and wet
Dust collectorcyclone (bagless)cyclone (bagless)
Specs
Suction force4000 Pa5300 Pa
Dust collector capacity0.45 L0.35 L
Water tank capacity0.08 L
Automatic power control
Fine filterHEPA
Robot vacuum cleaner
Additional operating modes
turbo mode
vibration mopping
turbo mode
 
Cleaning area limitappapp
Robot features
scheduled cleaning
anti-fall function
obstacle sensor
object recognition
control via Internet
 
scheduled cleaning
anti-fall function
obstacle sensor
object recognition
control via Internet
security camera
Mapping systemrangefinder + camerarangefinder + camera
multi-map memory
Voice assistantGoogle Assistant, Amazon AlexaGoogle Assistant, Amazon Alexa, Apple Siri
Cleaning area200 m²200 m²
Crossing threshold20 mm
Nozzles included
Nozzle functions
side brush
turbobrush
microfibre
floor polisher (for wiping)
side brush
turbobrush
microfibre
floor polisher (for wiping)
Power source
Source of powerbatterybattery
Battery typeLi-IonLi-Ion
Battery capacity6.4 Ah5.2 Ah
Battery run time160 min210 min
Charging station++
Docking station with dust collector
Nozzle self-cleaning
More specs
Noise level59 dB
Dimensions (HxWxD)10.6x33.4x31.4 cm9.7x35x35 cm
Weight3.7 kg
Color
Added to E-Catalogdecember 2022december 2022

Suction force

The suction force provided by the vacuum cleaner. It is indicated by the maximum vacuum (negative pressure) that the unit can create at the working nozzle.

Note that this parameter is sometimes confused with the suction power described above, which is indicated in watts. Yes, suction force to some extent determines the efficiency of the unit. However, this efficiency also depends on the performance (airflow). And the suction power, indicated in watts, takes into account both of these parameters — it is determined by multiplying the suction force by the performance (see above for more details). For this reason, there is no strict relationship between this force and suction power: for example, a vacuum of 25,000 Pa can be found in models with 250 W, 200 W and even 150 W of power.

As for the practical significance of this spec, in general, a higher suction force allows you to work more efficiently with high resistance. For example, when processing carpets with a long pile. On the other hand, more pascals (with the same number of watts) means less airflow and, accordingly, less efficiency for large amounts of work at low resistance (for example, cleaning large rooms with parquet floors). Thus, it makes sense to pay attention to this indicator mainly in cases where high suction force is fundamental for you. In other cases, it is worth evaluating the capabilities of the vacuum cleaner in terms of suction power in watts.

Note that for a number of...reasons, the suction power is most often specified for robot vacuum cleaners (see “Produc type”). For such models, a value of 1500 Pa and below is considered very small, 1500 – 2000 Pa — medium, 2000 – 2500 Pa — high, more than 2500 Pa — very high.

It is also worth mentioning that the indication of suction force is often used as a publicity trick — to improve the impression of the product. For example, the suction power of 150 watts in itself is quite modest. But at the same time, the suction force of such a vacuum cleaner can be 25,000 Pa — a very impressive figure, especially for an inexperienced buyer, but having a very indirect relation to real efficiency. Especially often, such tricks are used among upright models and the already mentioned robots — these varieties initially do not differ in high power in watts. For many of these units, the characteristics only indicate the vacuum in pascals without specifying the suction power. It further enhances the impression: for example, in the specs of a modest robot, the figure "3000 Pa" looks much more impressive than "40 W". However, such figures have a very weak relation to the real capabilities of the unit and if they are not supplemented by data on suction power in watts, they should be considered solely as bait for a not particularly sophisticated buyer.

Dust collector capacity

The nominal volume of the dust collector installed in the vacuum cleaner.

This indicator largely depends on the type of unit (see above). For example, in most handheld household models, the capacity does not exceed 0.5 L. The volume of the container in upright vacuum cleaners and robots can be somewhat larger — among the first variety there are quite a few models for 1 – 2 liters or even more, and among the second — by 0.6 – 1 liter and a little more. For conventional vacuum cleaners, the minimum figure is actually about 0.8 – 1 L; dust collectors for 1 – 2 L and 2 – 4 L are very popular in such devices; the maximum capacity is actually 4 – 6 liters — units of a similar layout, but with a larger capacity, are usually referred to as household ones. In turn, relatively small containers are occasionally found among workshop models. However, in vacuum cleaners of this type, the capacity is generally quite large — it can reach 26 – 50 liters or even more ; the same applies to industrial (construction) units.

In general, a larger dust container allows you to work longer without interruptions. On the other hand, a capacious container itself takes up more space and, accordingly, affects the size, weight and price. So when choosing th...is parameter, it is worth considering the actual features of the use of a vacuum cleaner. Here we can give such an example: for a full-scale cleaning of an average city apartment, a capacity of about 1 – 1.5 litres is required. Thus, say, a 4-litre bag allows you to carry out two such cleanings with sufficient efficiency without unloading the vacuum cleaner. There are more detailed recommendations regarding the optimal volume of the dust collector, including specific cleaning options. These recommendations can be found in special sources.

Water tank capacity

A capacity of a tank for water or detergent a vacuum cleaner with a wet cleaning function is equipped with. (see "Cleaning type").

Large capacity allows you to work longer without refilling the tank. On the other hand, an increase in capacity has a corresponding effect on the size, weight and cost of the unit. Thus, manufacturers choose this parameter taking into account the general specialization and the “weight category” of a particular model. So, in robots (see "Type"), the volume of the water tank is, by definition, small. Even in the heaviest models, it does not exceed 650 mL. But other types of vacuum cleaners can differ markedly in this parameter.

In general, for non-robot units, a capacity of 1 liter or less is considered very limited, 1 – 2 liters is small, 2 – 3 liters is average, more than 3 liters is above average. However, it much depends on the type. For example, in conventional vacuum cleaners, the capacity does not exceed 2.5 liters, and "for workshop" models this is very little — in most cases, they have a tank capacity of 3 liters or more.

Fine filter

The presence of a HEPA fine filter in the vacuum cleaner; also in this paragraph, the specific class of this filter is often specified.

HEPA (High Efficiency Particulate Absorbing) filters are designed to purify the air from the smallest mechanical contaminants — up to tenths of a micron in size. It allows you to trap not only fine dust but even bacteria. For comparison: the size of most bacteria starts at 0.5 microns, and the effectiveness of HEPA filters is evaluated by the ability to retain particles with a size of 0.1 – 0.3 microns. The most advanced such filters ( class 13 and above) are able to remove more than 99.9% of these particles from the air. Here is a more detailed description of the different classes:

— HEPA 10 – traps at least 85% of particles with a size of 0.1 – 0.3 microns;
— HEPA 11 – at least 95% of such particles;
— HEPA 12 – not less than 99.5%;
— HEPA 13 – not less than 99.95%;
— HEPA 14 – not less than 99.995%;

Note that pollution with a size of 0.1 – 0.3 microns is the worst-kept by HEPA filters, so with particles of other sizes (both larger and smaller), the efficiency of such elements will be even higher.

Regarding the choice for this parameter, it is worth noting that, in fact, it does not always make sense to pursue a high filtration class. For example, during wet cleaning with a washing vacuum cleaner (see abov...e), the HEPA filter, in fact, is not needed at all (in many models, it is recommended to remove it altogether for such cases). So if you plan to use such a vacuum cleaner mainly for washing, you can ignore this parameter. Another specific case is industrial units (see "Type"): they are often used for rough cleaning of large debris, where thorough air filtration is not required.

Additional operating modes

Additional modes of operation provided by the robot cleaner (see "Product type").

First of all, let us clarify that the standard modes, in this case, include two formats of cleaning at standard power — continuous, in which the vacuum cleaner carefully cleans the entire room (or its specified area), and chaotic, in which it moves randomly within the working area. Other ways of working are considered additional; their list is given in this paragraph. Among the most common additional modes are spot cleaning (Spot), perimeter cleaning (Edge), and turbo mode. In addition, a fairly popular function is the Zigzag. Here is a detailed description of the different options:

— Spot cleaning (Spot). A mode that allows you to use the vacuum cleaner for targeted cleaning of a relatively small area of the room — for example, when spilling a small amount of debris. Most often, this programme works as follows: the robot moves to the centre of a user-defined zone, and then starts moving from this point in an expanding spiral and stops at a given distance from the starting position.

— Perimeter cleaning (Edge). A mode that allows you to start the vacuum cleaner around the perimeter of a given zone. By the name, it is mainly used for cleaning along the walls of the room: a lot of dirt accumulates in these places, which are difficul...t to remove when using standard cleaning modes.

— Turbo mode. Power mode for more suction force. Usually, the movement of the vacuum cleaner, in this case, can be carried out according to any programme available in the settings — both standard (combing, random movement) and additional (Spot, Edge, Zigzag). Anyway, the turbo mode is useful primarily for cleaning carpets and other floor coverings with pile, for which the standard power of the vacuum cleaner is not enough. However, working at increased traction increases the load on the unit and increases its wear. Therefore, most models have restrictions on the maximum time of continuous operation in turbo mode and sometimes on the minimum duration of breaks between switching on this mode.

— Zigzag. Zigzag movement is a kind of transitional variant between the orderly combing of the room and the random choice of direction. Zigzag allows you to achieve greater efficiency than chaotic movements. In addition, with such a movement, it is easier to compensate for the presence of various obstacles and ensure thorough cleaning of the entire given area.

Robot features

Additional functions provided in the design of the robot vacuum cleaner (see "Type").

Most often in modern robots you can find such special functions: scheduled cleaning, fall protection, obstacle sensor, object recognition, water supply adjustment, control via the Internet, remote control and video surveillance camera. Here is a more detailed description of each of them:

- Scheduled cleaning. The ability to set a schedule according to which the vacuum cleaner will clean automatically, without additional commands from the customer. At the same time, the specific features of such programming may be different, they should be specified separately. So, in the simplest models, the schedule is limited to individual hours within a day - for example, from 16 to 17; at the set hours, the vacuum cleaner is switched on every day. More advanced devices may provide a schedule for the days of the week or even for the dates of the month or year. In any case, this function greatly simplifies the use: it is enough to set the schedule once - and you can not worry about cleaning for at least a few days; especially since most models with this capability also have the function of docking...(see “Robot Configuration - Charging Station”), and the customer only needs to periodically empty the dust container (which is even more simplified if there is a docking station with a bag - see . below).

- Fall protection. Special protection that prevents the vacuum cleaner from falling off steps, high thresholds, etc. In most cases, the basis of such a system is one or more sensors located on the underside of the case. When the vacuum cleaner travels to the edge of the surface being treated, the sensor reacts to this edge - as a result, the device stops and changes direction in order to avoid falling.

- Obstacle sensor. Sensor (or sensor system) for detecting obstacles in the path of the vacuum cleaner. The specific type of such sensors can be different: ultrasonic, infrared, laser, contact, etc. However, in any case, this function allows the device to move in space, avoiding collisions and determining the best detour path. Note that models without such a sensor, for the most part, are also able to bypass obstacles - however, for this, the robot must not only stumble upon a foreign object, but try to pass through it. And only in case of failure, the trajectory changes - moreover, randomly, far from always in the optimal (or at least suitable) direction.

- Object recognition. The function of recognizing various objects on the floor that may interfere with the cleaning process. It is implemented through the presence of a front camera to adjust the optimal route for the vacuum cleaner along the perimeter of the serviced area. The camera in the design of the robotic cleaner reads the outlines of objects and allows you to bypass such obstacles. As a result, slippers, socks thrown under the bed, children's's toys and wires will no longer interfere with the movements of the vacuum cleaner. The function is of particular benefit in the presence of pets at home that are not accustomed to the tray - the robot will calmly has their waste products and keep the nervous system of pet owners healthy.

— Adjustment of water supply. Dosing system for the degree of wetting of the washing cloth in automatic mode. The ability to select the intensity of the water supply allows you to adjust the operation of the robotic vacuum cleaner for different types of floor coverings. For example, for parquet and laminate, the customer can set a low water flow rate, and for less whimsical tiled flooring, a high water flow rate. Also, the vacuum cleaner can turn off the water supply to avoid leaks, for example, when charging. In advanced models of robotic vacuum cleaners, the function of choosing an individual degree of wetting of the napkin for each of the rooms of the dwelling is often incorporated.

— Docking station with a bag. Docking station with its own trash bag. Upon arrival at such a stand, the robot can not only recharge the battery, but also carry out self-cleaning - unload the collected garbage into an external container; The capacity of the dock, as a rule, is enough for several unloadings. The convenience of this function is obvious: it allows the device to work longer without customer intervention, eliminates the need to manually clean the vacuum cleaner when the dust container is full (besides, unloading garbage from the dock is usually easier than such cleaning). True, and such opportunities are quite expensive.

- Management from the Internet. The ability to control the vacuum cleaner via the Internet - most often through a special application on a smartphone or other gadget (theoretically, such control is also possible through a web page that opens in any browser, but in practice this method is almost never used). The robot itself is connected to the network via Wi-Fi. The main advantage of this function is obvious - it allows you to give commands to the device from anywhere in the world where there is Internet access. In this way, for example, you can start a cleaning programme the day before you return from vacation in order to return to a freshly cleaned apartment. And the vacuum cleaner, in turn, can send various notifications to the customer - about the state of the battery, the progress of cleaning, the fullness of the dust container, etc.

- Remote control. A classic remote control that allows you to give commands to the device from a distance. As a rule, such a remote control covers all the main functions of the vacuum cleaner, and in many models it also allows you to directly control the movement. In any case, without remote access, it would be very difficult to control a moving vacuum cleaner - you would either have to wait until it finishes working, or catch the unit on the go. In light of this, this feature is very popular; however, on sale you can find a lot of robots without a remote control. As a rule, these are either the simplest budget devices with a random movement mode and without any additional functions, or advanced models where a smartphone / tablet with an application is used for control.
We also note that the remote controls in robotic vacuum cleaners usually work via an infrared channel - similar to remote controls for TVs, air conditioners, etc. Thus, to receive a command, the vacuum cleaner must be in the line of sight. However, in most cases this can not be called a serious inconvenience.

- Videcam. Own surveillance camera built right into the vacuum cleaner. This feature is only found on web-based models (see above); it allows you to use the robot as a remote video surveillance system and control the situation in the room, being outside and watching the picture from the camera on the smartphone screen. Also, the built-in camera can be used in the mapping system (see "Building a room map") - however, we note that not every vacuum cleaner with a built-in mapping camera has a video surveillance function.

Voice assistant

Types of voice assistants supported by the robot vacuum cleaner.

As the name implies, this function allows you to control the robot using voice commands. However, we emphasize that in this case, we are not talking about the voice recognition system built into the vacuum cleaner but about compatibility with an external device on which the corresponding voice assistant is installed — a smartphone, tablet, smart speaker, etc. Thus, to use voice control, an additional device will inevitably be required; on the other hand, there are no problems with the search for such a device nowadays. And in itself, such a control method often turns out to be more convenient than a command from the remote control or searching for the desired option in the control application.

As for specific assistants, the most popular nowadays are (in alphabetical order) Amazon Alexa, Apple Siri, Google Assistant. And in robot vacuum cleaners, compatibility can be provided both with one of them and with several at once. The specific control functionality available through the voice assistant should be specified separately for each model. It is also worth paying attention to the supported languages: for Siri, the language must be selected in the settings, for the Google Assistant, automatic language recognition is available (some adjustment may be required), and in Alexa (as of early 2021) support for the Russian language is not provided at all.

Crossing threshold

The highest height of thresholds and various small obstacles that the robot cleaner can effectively overcome.

Most modern robots are able to effectively cope with obstacles with a height of 10 to 18 mm — this allows at least without problems to cross the edges of carpets, and small height differences at the boundaries of rooms (due to the difference in the type of coating), etc. But the models where the indicator is 20 mm or more are already referred to as robots capable of crossing high thresholds. However, even in such devices, the permissible height of obstacles does not exceed 30 mm. It is due to the fact that to overcome high obstacles, in particular, large wheels and high ground clearance are needed — and these features, in turn, increase the overall height of the robot, make it difficult to move under furniture and other low-lying objects, as well as reduce suction efficiency. On the other hand, even thin robots, whose height does not exceed 70 mm, can have very good crossing ability — for some of them, the maximum threshold height is about 25 mm.

Battery capacity

The capacity of the battery installed in the vacuum cleaner.

Recall that batteries are used in all robots, as well as other types of vacuum cleaners for which mobility is important; see "Power supply" for details. As for battery capacity, theoretically, a larger battery allows you to work longer without recharging. However, there are nuances. Firstly, the actual battery life of the unit will also depend on its type, power and some features of the functionality. Secondly, the actual battery capacity is determined not only by this indicator but also by the voltage in volts. So if these batteries differ in voltage, you need to convert their capacity into watt-hours and use this data when comparing. These calculations are described in more detail in special sources.

In light of all this, only vacuum cleaners with similar specifications can be directly compared in terms of battery capacity. And it is best to evaluate the actual battery life by the directly claimed operating time.
Dreame Bot W10 Pro often compared
Dreame L10s Ultra often compared