United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Poco C40 64 GB / 4 GB vs Xiaomi Redmi 10C 64 GB / 4 GB

Add to comparison
Poco C40 64 GB / 4 GB
Xiaomi Redmi 10C 64 GB / 4 GB
Poco C40 64 GB / 4 GBXiaomi Redmi 10C 64 GB / 4 GB
from £95.99 
Expecting restock
Compare prices 2
TOP sellers
Main
Popular Snapdragon 680 processor. Infrared port for controlling equipment.
Display
Main display
6.71 "
1650x720
268 ppi
IPS
60 Hz
Gorilla Glass v3
6.71 "
1650x720
268 ppi
IPS
60 Hz
Gorilla Glass v3
Brightness400 nit
Display-to-body ratio82 %82 %
Hardware
Operating systemAndroid 11.0Android 11.0
CPU modelJLQ JR510Snapdragon 680 4G
CPU frequency2 GHz2.4 GHz
CPU cores88
Processor rating AnTuTu13
GPUARM Mali-G52Adreno 610
RAM4 GB4 GB
RAM typeLPDDR4X
Memory storage64 GB64 GB
Storage typeUFS 2.2UFS 2.2
Memory card slotmicroSDmicroSD
Max. memory card storage1024 GB1024 GB
Test results
AnTuTu Benchmark132 000 score(s)248 000 score(s)
Sling Shot Extreme (OpenGL ES 3.1 / METAL)611 point(s)
Main camera
Lenses2 modules2 modules
Main lens
12 MP
f/2.2
 
50 MP
f/1.8
26 mm
Auxiliary lens
 /2 MP, f/2.4/
 /2 MP/
Full HD (1080p)30 fps30 fps
Flash
Front camera
Form factorteardropteardrop
Main selfie lens5 MP5 MP
Aperturef/2.2f/2.2
Full HD (1080p)++
Connections and communication
Cellular technology
4G (LTE)
 
4G (LTE)
CDMA
SIM card typenano-SIMnano-SIM
SIM slots2 SIM2 SIM
Connectivity technology
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
 
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
NFC
Inputs & outputs
USB C
mini-Jack (3.5 mm) top
USB C
mini-Jack (3.5 mm) top
Features and navigation
Features
rear fingerprint scanner
 
noise cancellation
gyroscope
light sensor
rear fingerprint scanner
FM receiver
noise cancellation
gyroscope
light sensor
Navigation
aGPS
GPS module
GLONASS
digital compass
aGPS
GPS module /BDS/
GLONASS
digital compass
Power supply
Battery capacity6000 mAh5000 mAh
Battery life (PCMark)18.12 h22.57 h
Fast chargingPump ExpressQuick Charge 3.0
Charger power18 W18 W
General
Bezel/back cover materialplastic/plasticplastic
What's in the box?
case
screen protector
charger
case
 
charger
Dimensions (HxWxD)169.6х76.6х9.2 mm169.6x76.6x8.3 mm
Weight204 g190 g
Color
Added to E-Catalogaugust 2022june 2022

Brightness

The maximum brightness in nits provided by the smartphone display.

The brighter the display, the more readable the picture remains on it under intense ambient light (for example, outdoors on a clear sunny day). Also, high brightness is important for the correct displaying of HDR content. However, a large amount of brightness affects the cost and power consumption of the screen. Manufacturers can specify standard, maximum, and peak brightness values. At the same time, an equal sign cannot be put between the maximum and peak brightness. The first indicates the ability of the screen to produce the specified brightness over its entire area, while the peak one — in a limited area and for a short time (mainly for HDR content).

CPU model

The most popular nowadays are chips from Qualcomm and MediaTek, CPUs from Unisoc are slightly less common. Qualcomm has several processors of each series, namely Snapdragon 778G, Snapdragon 7 Gen 1, Snapdragon 7+ Gen 2, Snapdragon 7s Gen 2, Snapdragon 7 Gen 3, Snapdragon 7+ Gen 3, Snapdragon 865, Snapdragon 870, Snapdragon 888, Snapdragon 8 Gen 1, Snapdragon 8+ Gen 1, Snapdragon 8 Gen 2, Snapdragon 8 Gen 3, Snapdragon 8s Gen 3. And Mediatek has a low cost series MediaTek Helio P and a line of advanced chipsets MediaTek Dimensity (Dimensity 1000, Dimensity 7000, Dimensity 8000, Dimensity 9000).

Knowing the name of the CPU model installed in the smartphone, you can find detailed data on a particula...r CPU and evaluate its level and general capabilities. This is especially true in light of the fact that these capabilities depend not only on the number of cores and clock speed, but also on the specific nuances of the design.

CPU frequency

The clock frequency of the CPU that the device is equipped with. For multi-core processors, which are standard in modern smartphones, the frequency of each individual core is implied; and if the processor has cores with different frequencies (see "Number of cores") — usually, the maximum indicator is given.

In general, high performance smartphones have high frequency of the processor. However, note that this parameter itself is not directly related to the capabilities of the CPU: many other features of the chip affect the actual performance, and often a low cost solution with a higher clock speed turns out to be less performant than an expensive one, and at the same time, presumably, more "slow" processor. In addition, the overall performance of the system directly depends on a whole set of other factors — primarily the amount of RAM. Therefore, when evaluating a smartphone, it is worth focus not so much on the frequency of the processor, but on the general specs of the system and visual indicators like the results in tests (see below).

Processor rating AnTuTu

End-to-end processor rating (regardless of chipset manufacturer) for Android smartphones. It is based on a set of maximum performance indicators of the processor itself, the memory bus, the graphics core, etc. Processor ratings can be useful to enable comparison and easy selection of similar models.

GPU

The model of the GPU used in the mobile phone.

This module is responsible for all tasks related to graphics; accordingly, its specs directly affect the efficiency of processing a particular picture. This is especially noticeable in the example of modern 3D games. Therefore, the presence of a powerful video adapter is especially important for gaming smartphones. And knowing the model of the GPU, you can find detailed data about it and evaluate its capabilities.

RAM type

The type of random access memory (RAM) installed in the smartphone.

All modern devices use LPDDR format RAM ( LPDDR4, LPDDR4x, LPDDR5, LPDDR5x, LPDDR5T). In addition to its miniature size, it differs from regular computer RAM by supporting special data transfer formats (16- and 32-bit memory buses). But the versions of such memory can be different:

— LPDDR3. The earliest generation of LPDDR of the current ones — presented in 2012, implemented in devices since 2013. Standardly operates at speeds up to 1600 MT/s (megatransactions per second) and a frequency of up to 933 MHz; the “enhanced” version supports speeds up to 2133 MT/s. Nowadays, this standard is rare, mainly among outdated mobile devices.

— LPDDR4. The successor to LPDDR3, officially presented in August 2014 (although the first hardware developments were released back in late 2013). The operating speed, compared to its predecessor, has doubled — up to 3200 MT/s; the frequency has grown to 1600 MHz; and the power consumption has decreased by 40%. In addition, the data transfer format has changed — in particular, two 16-bit buses are used instead of one 32-bit, and some security improvements have been introduced into the standard. This memory can be found in some mid-range smartphones. — LPDDR4x. An improved version...of LPDDR4 with reduced power consumption — the standard uses a voltage of 0.6 V instead of 1.1 V. In addition, some improvements have been implemented in this type of RAM, aimed at increasing the speed (it reaches 4266 MT/s) and general optimization of operation — for example, a single-channel mode has appeared for undemanding applications. Thanks to such characteristics, this version of memory has become much more widespread than the original LPDDR4. It can be found in mid-range and top-end devices.

— LPDDR5. Further development of "mobile" RAM, officially announced in early 2019. The operating speed in this version has been increased to 6400 MT/s, a differential signal format has been introduced to improve resistance to interference and errors, and dynamic frequency and voltage control has been implemented to reduce power consumption. The use of such memory modules is typical mainly for high-end smartphones.

— LPDDR5x. A more energy-efficient and faster version of LPDDR5 RAM. Its data transfer rate has been increased to 8533 MT/s, and the peak throughput indicator is up to 8.5 Gbps. The number of memory banks per channel in LPDDR5x is always 16. RAM of this standard is typical for advanced smartphones of the highest grade.

— LPDDR5T. T — means "turbo". The operating speed of the LPDDR5T standard "RAM" has been increased to 9600 MT/s, and devices with such memory modules are approximately 13% faster compared to LPDDR5X. The memory operates in the low voltage range from 1.01 to 1.12 V. The corresponding modules are aimed at use in top mobile devices.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 900K points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Sling Shot Extreme (OpenGL ES 3.1 / METAL)

The result shown by the phone in the 3DMark Sling Shot Extreme (OpenGL ES 3.1 / METAL) test.

3DMark is a series of benchmarks originally designed to test the GPU performance of a device; later, these tests were supplemented by checking the capabilities of the CPU and RAM in general. Specifically, Sling Shot Extreme is one of the latest versions of 3DMark, released in 2016 for testing high performance devices and gaming smartphones, for which earlier tests are no longer enough. One of the key features of the test is support of resolutions up to 2560x1440 (for predecessors, the maximum resolution did not exceed 1920x1080, or even 1280x720). In addition, as the name suggests, the test supports the OpenGL ES 3.1 (for Android) and Metal API (for iOS) specifications used in modern mobile video chips; and since mid-2019, support of the 64-bit CPU architecture has also been added to it. Thus, 3DMark Sling Shot Extreme allows you to reliably evaluate even the most performant and advanced modern smartphones. At the same time, the assessment is traditionally indicated in points: the more points, the better the result.

The results of any benchmark are usually quite approximate, because they depend on many factors not directly related to the system. The error due to these factors is usually about 5 – 7%; therefore, it is possible to speak of a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.
Poco C40 often compared
Xiaomi Redmi 10C often compared