United Kingdom
Cooker Hoods Neff 

Articles, reviews, useful tips

All materials
Category brands reviews cooker hoods
Rating of brands from cooker hoods section based on reviews and ratings of site visitors
05.2024
Rating cooker hoods (may)
Popularity rating cooker hoods is based on integrated statistics on interest shown by Internet audience
How to choose a cooker hood
Secrets of choosing a cooker hood that will fit all parameters and last for many years
How to clean the hood
It is important not only the external cleanliness and attractiveness of the hood, but also the condition of its internal parts.

Cooker Hoods: specifications, types

Product type

Traditional (wall). Free-standing (non-embedded) wall-mounted units. The most common type of modern hoods: hobs are often placed near the walls, and it also makes sense to install the hood there.

— Wall/built-in. This type includes exclusively visor hoods(see below), which can be installed both as wall-mounted and built-in.

Built-in (in cabinet). Hoods mounted in a kitchen cabinet; only the duct panel remains outside. It can be fully built-in or have a sliding panel; see "Design" for details. Nevertheless, the built-in hood is almost entirely hidden inside the cabinet, making it easier to fit into the overall kitchen design than a stand-alone one.

Island (ceiling). Hoods mounted on the ceiling. The advantage of such devices is that they can be installed anywhere in the kitchen, not necessarily against the wall. If the hob is placed not against the wall but in the middle of the kitchen, such a hood can be indispensable.

— Suspended (ceiling). Hood models that are as similar as possible to island hoods differ in the type of installation — they use special cables that hold the device under the ceiling (something similar to hanging chandeliers). And, due to the distance from the wall (ceiling), such hoods work on the principle of recirculation, air extraction is not typical for them.

...Built-in (ceiling). A type of built-in hood mounted on the ceiling — usually between the suspended and the main ceiling. Such models are distinguished by their large size and high performance; they are intended not so much for the "maintenance" of individual cooking hobs but for general ventilation of the premises. Also, note that the installation of such hoods has to be planned already at the stage of the initial design of the premises.

— Corner (wall). Hoods designed for installation in a corner. In some cases, it is this installation of the cooker (and hood) that is the best option. In general, such devices are similar to the wall-mounted ones described above.

— Downdraft (built into tabletop). A variety of built-in hoods designed to be built into the countertop. Usually, they are equipped with a retractable air intake, which, when opened, moves upwards, and when not in use, it is hidden inside the countertop and does not interfere with its use.

Design

Dome. Hood with a round or rectangular air duct; in the lower part turning into a conical or trapezoidal body. Usually, it has a discreet design with a minimum number of decorative elements. Exceptions to this rule apply to country style, shown separately.

T-shaped. Outwardly, it resembles a dome hood, but instead of a conical or trapezoidal body, the air duct ends with a flat rectangular air intake. In cross-section, the system resembles the letter "T" for which it got its name.

Angled. In such hoods, the air intake panel is installed at an angle to the duct. This design is purely aesthetic and does not affect functionality.

Vertical panel. A special type of wall-mounted hood that is as close as possible to angled models, except that when not in use, the front panel is parallel to the wall and not at an angle.

Cylindrical. Classic cylindrical hoods.

Rectangular. Hoods of an even geometric shape of a solid design and do not have a division into a duct and a body (as is done in T-shaped models).

With glass. The main distinguishing feature of all such hoods is the presence of a glass plate in the design as an additional decorative...element. The very appearance of the hood can be anything: dome with glass, T-shaped with glass, angled with glass, cylindrical with glass.

Visor. Extractor hood designed for installation under a kitchen cabinet. At the same time, the air duct is hidden inside, and outside there is only a flat air intake resembling a visor (hence the name). Glass is often used in the design of the visor.

Sliding panel. As the name implies, these hoods are equipped with a retractable air intake panel. During operation, the panel opens — thus increasing the effective suction area. The hood itself is usually built into a cabinet or table (see "Product type"). But this type can be implemented in two ways. Sliding hoods with open panel when closed have a front panel that stands out and is visible under the cabinet. Sliding hoods with hidden panel are not visible when closed, and the opening mechanism is designed in such a way that the panel extends slightly at an angle.

Fully built-in. Hoods that are built-in in the full sense of the word: the device is almost entirely hidden in a hanging cabinet or ceiling; only the air intake panel is outside. Such an installation is known by a minimum of visible details and allows you not to worry about how the hood will fit into the kitchen interior.

Modern (unusual design). Hoods with a hi-tech look — using polished metal, glass and a minimum of decorative elements. Most modern style hoods have a specific design that does not fit into any of the options described above; Therefore, they are separated into a separate category. However, the design of such devices may vary; there are both absolutely minimalistic and rather pretentious, original design.

Country. Country-style hoods usually have light, soft body colours (white, beige, light grey) and structural elements decorated in wood, bronze and other similar materials. By design, such devices are usually similar to domed ones. Note that with similar performance, country hoods are noticeably more expensive than conventional style models. In addition, they are quite demanding on the environment: the whole kitchen must be made in a similar style. otherwise, it is likely that the device simply does not fit into the interior.

Modes

Modes supported by the hood.

Extraction only. The device draws in the air in the room and takes it to the ventilation shaft or directly to the street. It is a very effective way to clean the air from pollution: all impurities, including odours, are simply removed. However, when the hood is operated in this mode, you must either open windows or provide adequate ventilation. Because of this, this mode is not always appropriate: for example, in the cold season, not only pollution but also heat can fly out into the chimney. Therefore, in most modern hoods, a recirculation mode is also provided.

Recirculation. An operating mode in which the hood does not draw air from the room but drives it through its own filters. This mode is not as effective in terms of air purification as extraction. To effectively remove odours you need to use absorbent filters, that have a limited service life. On the other hand, recirculation does not require an intensive flow of outside air, which in some situations is important — for example, in the cold season, when it is undesirable to blow out the heated air from the room.

The vast majority of modern hoods support both modes of operation. Occasionally, some models are not compatible with carbon filters and work only in extraction mode; even rarer — devices with recirculation only mode.

Motor power

The power of the hood at maximum speed.

The more powerful the device, the more performant it is, usually. However, there is no rigid dependence here, and hoods of the same power may differ in actual performance. So it is worth evaluating power consumption in terms of power first of all: the lower this indicator, the more economical the device. And when evaluating performance, you need to look not so much at power as at the directly claimed flow of the air (see below).

Flow of air (motor)

The maximum flow of air or motor flow of air indicates the theoretical capability of the device. This parameter of the hood (motor) is measured during idle operation. By connecting the duct and working in the appropriate mode of extraction, the flow of air will be lower. However, high-performance motors will also give a high flow of air in extraction mode.

Flow of air (extraction)

The performance of the hood in extraction mode at maximum speed shows the real possibilities for air purification. Since this parameter is several times less than the motor performance (maximum performance), not all manufacturers indicate this value, trying to present large and beautiful numbers. A similar situation can be observed among other devices. For example, in vacuum cleaners, the total power is many times greater than the suction power; in acoustics, mediocre brands prefer to list peak power instead of nominal power. Therefore, motor performance and extraction performance can not be compared. However, high-performance motors will also give high performance in extraction mode. And it may well be that the conditional Bosch with an extraction performance of 300 m³/h will be better than another hood with a maximum motor performance of 500 m³/h.

Flow of air (intensive mode)

Extraction flow of the air when using intensive mode. This mode is used in case of emergency on the stove, such as burnt food, spilt liquid, etc., which give off a lot of smoke and an extremely unpleasant smell. In turn, the intensive mode forces the hood to run at maximum speed, thereby increasing its performance even more (compared to performance at maximum speed). However, this function is activated for a short time (so the motor does not burn out). Therefore this mode is not considered standard, and it will not be possible to use it in everyday cooking.

Minimum noise level

The volume at which the device operates in the quietest mode. Usually (but not necessarily) it is the minimum power mode.

The decibels in which the noise level is measured are non-linear units, so it is easiest to use comparison tables to estimate a specific value. Here is the simplest table for minimum noise in modern hoods:

— 20 dB. Almost inaudible. The volume of a whisper at a distance of 1 m, the sound background in an open field on a calm day.
— 30 dB. The whisper, the ticking of the clock. The maximum noise level allowed for residential premises at night.
— 40 dB. The volume of normal human speech. The maximum permissible sound background (permanent) for living quarters during the day.
— 50 dB. Conversation of several people in medium tones.
— 60 dB. Loud talk.
— 65 – 68 dB — background noise on a city street, a vacuum cleaner engine at a distance of 2 – 3 m. The highest noise level among modern hoods is typical for powerful performant models.

When choosing according to this indicator, note that, other things being equal, a quieter device will, accordingly, cost more.

Max. noise level

The level of noise produced by the hood in the loudest mode of operation. Usually (but not necessarily) it is the maximum power mode. It affects the comfort during operation of the device, so quiet hoods will be more preferable, but also more expensive.

The decibels in which the noise level is measured are non-linear units, so it is easiest to use comparison tables to estimate a specific value. Here is the simplest table for the values relevant in this case:

— 35 dB. The volume of a conversation in an undertone (but not a whisper). The lowest maximum noise value in modern hoods. Devices with such characteristics are almost guaranteed not to cause inconvenience: such noise is often blocked by other sounds, for example, the background noise of the street in an open window.
— 40 dB. The volume of a normal conversation. The maximum noise level allowed in a residential area during the day. If the hood is bought for home use, and it is supposed to be turned on often and for a long time, the noise level in the selected device shouldn't exceed this indicator.
— 50 dB. Conversation volume at medium tones.
— 60 dB. Raised conversation.
— 70 dB. Sound background on a busy street, in a crowd of people talking loudly, the sound of a vacuum cleaner motor at a distance of 2 – 3 m.
— 75 dB. Scream or loud laughter at a distance of about a metre.
— 78 – 79 dB. Loud mechanical alarm clock, motorcycle o...r truck engine. The highest level in modern consumer-grade hoods.

Note that the actual comfort of using the device depends not only on the volume but also on the timbre (tonality) of the noise: for example, a low, even rumble is generally perceived easier than high frequencies with clanging notes. If the hood installation is unsuccessful, the actual noise level may be higher than stated in the specifications. For example, additional noise can be caused by the hum of air in the ducts or rattling from the contact of the vibrating body with the wall. However, when choosing, it is worth focusing on the noise level claimed in the specifications.

Number of speeds

The number of speeds at which the hood can operate.

The more speeds, the more accurately you can adjust the device's operating mode to a specific situation. At the same time, the vast majority of modern hoods have only three speeds which are enough for most occasions.

Number of motors

The number of motors provided in the hood.

For most modern models, one engine is enough — this is enough even for fairly high performance. Models with two motors are somewhat less common — usually, these are powerful performant hoods. One of the advantages of this design is that only one motor can be used at low speeds, and the second one can be connected only when maximum power is required. It has a positive effect on the minimum noise level (see above); on the other hand, the maximum noise level can be quite high, and such devices are usually more expensive than single-motor ones.

It is technically possible to use more than two motors. However, such models are single exceptions.

Grease filter

The type of grease filter normally used in the hood. Usually, it has the appearance of a fine mesh that traps drops of fat and kitchen fumes. The grease filter can be like this:

— Metal. In this case, different materials can be used; most often, the word "metal" means a filter made of a relatively inexpensive alloy, and aluminium and stainless steel are usually listed separately (see below for more details). Common features of metal mesh are strength, durability and reusability: it is enough to wash and dry a dirty filter, after which it is ready for use again.

— Aluminium. Filters made of aluminium alloys are considered to be very durable, because this material is highly resistant to corrosion. However, such filters are noticeably more expensive than ordinary metal ones (see above).

Stainless steel. Mesh made of this material has all the advantages of the metal filters described above; they are very reliable and durable, but at the same time not cheap. As a result, the use of stainless steel is typical mainly for premium hoods.

— Acrylic. A polymeric material similar to plastic. The main and the only advantage of acrylic filters is their low cost. At the same time, their service life is much shorter than that of metal ones. And some of these filters are generally disposable and cannot be cleaned after clogging. As a result, such filters are used mainly in low...-cost models of hoods, and even then quite rarely.

Ability to install carbon filter

The ability to install an additional carbon filter in the hood — in addition to the grease filter (see above).

It provides finer air purification than a grease mesh: the carbon filter is capable of retaining impurities literally at the molecular level. Due to this, it is possible to effectively clean the air from not only kitchen fumes but also odours that are not associated with smoke, steam and other relatively large impurities. However, the carbon filter has a limited service life, and it has to be changed from time to time (cleaning, in this case, is not an option).

Note that, in this case, we are talking only about the compatibility of the hood with a carbon filter. The filter itself may not be supplied. However, in many models with this function, it is available as an option (included or not included in the kit at the request of the user).

Carbon filter model

The model of the carbon filter compatible with the hood. For more information about such a filter, see "Ability to install carbon filter". Here we note that the carbon filter is not always supplied in a kit, and its service life is limited, periodic replacement is required. Anyway, the data on the filter model makes it much easier to find.

Filter indicator

The presence of an indicator signaling the clogging of the filter and the need to clean/replace it. Both grease and carbon filters can be equipped with such an indicator (see above for the filters themselves). One of the options for such an indicator is a pattern applied to the filter surface itself, and a signal about the need for replacement may be the disappearance or, conversely, the appearance of the pattern. A more advanced option is a timer that tracks the total operating time and gives a signal when the filter resource is exhausted.

Lighting

Lighting method provided as standard in the hood.

— Incandescent lamp. The simplest and most affordable of modern lighting sources. The main advantage of incandescent lamps is their low cost. In addition, they give a fairly eye-pleasing light in warm colours. On the other hand, such lamps are the most energy-intensive. Besides, they get very hot during operation.

— Halogen lamp. An improved version of the incandescent lamps described above. They are distinguished by higher brightness at lower power consumption while also having a spectrum of luminescence that is pleasing to the eye. At the same time, halogen lamps are still inferior in terms of efficiency to fluorescent and LED lamps.

— Fluorescent lamp. Also known as "fluorescent light bulbs" or "energy-saving light bulbs". One of the advantages of such lamps is just low power consumption — many times lower than that of incandescent lamps (although higher than that of LEDs). The light from fluorescent lamps is white, rather cold; this can be both an advantage and a disadvantage, depending on personal preferences and interior features. But of the unambiguous shortcomings, it is worth noting that most of these lamps contain mercury vapour in the flask; because of this, failed light bulbs must be disposed of according to special rules, and a broken lamp can become a source of health problems.

Light-emitting diodes (LED). The most advanced of mod...ern lighting sources. LEDs are highly energy-efficient. They are more economical than incandescent lamps, and they practically do not heat up during operation. The light from such sources is neutral white, which is quite suitable for most cases. The disadvantage of LEDs is a rather high price.

Note that many modern hoods allow you to replace a regular light source — for example, a halogen lamp can be changed to a fluorescent or LED lamp with the same base.

Controls

The control method provided in the hood.

Push-buttons. The most popular control method in modern hoods can be provided in devices of any functionality and price category — from low-cost models, where buttons directly control the motor, to high-end solutions with advanced electronic circuits.

Rotary knobs. Control with rotary knobs, sometimes supplemented by buttons or touch sensors. A rather specific option found mainly in high-end hoods, where rotary knobs are part of the design.

Slider. Control using the lever moved on the special panel. Usually, only power is regulated in this way: the farther the slider is from the neutral position, the more air the hood draws. A fairly universal control method, found in hoods of all price categories.

Touch controls. Control using touch panels is considered a sign of expensive high-end hoods. It is because it makes sense to use such panels mainly with advanced control electronics and they are poorly suited for low-cost devices. From a practical point of view, the touch controls are remarkable for their ease of use and ease of cleaning: a light touch is enough to give a command, and the panel itself has no slots or protrusions, making it easy to clean dirt.

Gesture control

The ability to control hood with gestures makes it easier to control it. Even greasy hands will not become an obstacle to changing the operating mode or turning it on/off. The hood will execute the specified command when the user moves their hand near the sensor. But the traditional electronic control is also implemented.

Control via Internet

Ability to control the hood via the Internet. The hood is usually connected to the World Wide Web via Wi-Fi, but the specific control features may be different. For example, in some models, you need to install a proprietary application on a smartphone or tablet; in others, a special web page is responsible for control, which can be opened in any browser.

Anyway, this function, on the one hand, significantly affects the cost; on the other hand, it provides additional convenience. Firstly, you can control the hood and monitor its condition anywhere in the world where there is the Internet; this is especially convenient if the unit is part of a smart home. Secondly, control via an application or page can have various additional functions — for example, programming by day of the week.

Remote control

A remote control allows you to control the functions of the hood from a distance. Such a remote control will be especially convenient for those who, due to low height or health problems, find it difficult to reach for the hood itself every time. At the same time, this function affects the cost of the device, and the need for it arises relatively rarely. Therefore, the presence of a remote control is typical mainly for rather expensive models.

Sleep timer

A timer that automatically turns off the hood after a predetermined time. With such a system, you do not need to wait until the completion of ventilation and turn off the device manually — just set the timer, and you can safely leave the kitchen on your own business; the hood will turn itself off at the right time.

Smoke sensor (auto-on)

System of hood automatic start. It is based on a sensor that monitors the presence of kitchen fumes in the air — when a certain concentration of smoke, steam, fat particles is detected in the air, the sensor gives the command to turn on. Such a system not only relieves the user of the need to turn on the device manually but also helps to save energy since the hood turns on only when it is really needed. In addition, not only automatic switching on but also automatic switching off can be provided — after a certain time (most often 5 minutes) after the sensor has ceased to detect pollution in the air.

Hob to hood

Compatibility of the hood with automatic control systems used in some hobs. Such control is carried out as follows: the hob determines how many burners and at what power thy are turned on and sends a control signal to the hood, adjusting its power to the current situation. Thus, the user does not need to adjust the ventilation manually — the kitchen equipment will automatically set the optimal hood mode.

It is worth noting that modern kitchen appliances use several different automatic control technologies. They can even differ in the principle of communication: for example, Miele's Con@Сtivity uses radio frequencies, and Electrolux's Hob2Hood uses infrared channel. Therefore, if you want to assemble a kit with automatic control, you should make sure that both the hood and the hob support the same communication technology. The easiest way to achieve this is to select devices from the same manufacturer.

Slot suction

In hoods with a slot suction, the filter elements are hidden under a decorative cover. Along the perimeter of its fit, gaps are formed through which air and other fumes are drawn in. The slotted design of the air intake increases the productivity of the hood while maintaining moderate power consumption.

Perimeter suction

A suction system that draws air into the hood through a series of holes around the perimeter of the air intake. This design provides high suction efficiency and, at the same time, allows you to apply advanced design solutions to the device. However, due to the high cost, it is typical mainly for premium hoods.

Customizable panel

The presence of an additional decorative panel(or several panels) in the delivery kit allows you to change the design of the device as you wish. The customizable panel usually does not have any functionality — its role is purely aesthetic.

Edge lighting

The presence of a edge lighting system in the design of the hood. Do not confuse such a system with the main lighting (see above) — we are talking about additional lights used solely for design reasons. As a result, edge lighting does not affect the main features of the hood, but it gives it an interesting appearance and can become an important touch in the overall design of the kitchen.

Display

The hood has its own display. Usually, this is the simplest LCD screen for two or three characters, sometimes with additional indicators. However, even such a screen makes device control more convenient and visual: it can display the current operating mode, information about the sleep timer (see Sleep timer), the status of filters (see Filter indicator), etc.

This function rarely is used in inexpensive hoods with the simplest functionality. Therefore, the display is usually a sign of an expensive and advanced model.

Built-in TV

The presence of a built-in TV in the hood allows you to watch TV shows while cooking, so you don’t miss your favourite series or show. This feature can be useful for fans of cooking shows. Also, the purchase of such a hood will save you from the need to purchase a separate TV for the kitchen. Built-in TVs can be supplemented with DVD players and the ability to connect to a computer.

Energy class

This indicator characterizes how economically the hood consumes electricity. Initially, classes were marked in Latin letters from A (highest) and further down as they went down; later, improved classes A+ and A++ appeared. (the more pluses, the better). More energy-efficient models are more expensive but can pay for themselves in the process of use, especially if you have to cook often and in large quantities.

Duct diameter

The duct diameter characterizes the size of the hood outlet to which the ducts are connected. The standard is either 120 mm or 150 mm. In many cases, an adapter from one diameter to another can additionally be included with the device. However, when replacing the hood with a new one, it is still better to operate with the existing pipe diameter and not use adapters.

Height (min)

The minimum height of the entire hood structure is from the lower edge to the upper part of the body (the point of connection of the external air duct). This parameter is indicated only for hoods with an adjustable design that allows you to change the height. Pay special attention to the minimum height if the device is planned to be installed in a kitchen with a low ceiling. In this case, it should be assumed that the optimal height of the air intake above the hob is 60-80 cm, and between the hood body and the ceiling, a headroom is required for the air duct. With a low ceiling, a hood that is too large may simply not fit into your kitchen.

Height (max)

The height of the entire hood structure is from the lower edge to the upper part of the body (the point of connection of the external air duct). For hoods with an adjustable design that allows you to change the height of the case, the maximum height is the size of the device in the unfolded state; in the case of non-adjustable hoods, this means a correspondingly constant overall height. When choosing a hood in height, it is worth proceeding from two points:

1. The optimal height of the air intake above the hob is 60-80 cm. This height allows the hood to capture kitchen fumes effectively and, at the same time, gives enough space to work with the hob.

2. Between the hood body and the ceiling, a clearance is required for connecting an external air duct.

Country of origin

The country in which this or that model is manufactured. Even though most of the capacities are concentrated in China, European factories for the production of household appliances have not disappeared. And certain models can be produced at them. In general, such a division into a Chinese or European factory should not particularly affect the quality of products, but the stereotype of a reliable European assembly is still present. However, it is possible that the model may have a country of manufacture, for example, Poland, and in the store under the same article, you will meet China.
Filters
Price
from£ up to£ 
Brands
Colour
Recommended area
Product type
Design
Features
Controls
Modes
Flow of air (motor / max.)
Flow of air (extraction)
Motor power
Width
Depth
Max. height
Min. noise level
Max. noise level
Energy class
Duct diameter
Release year
Clear parameters