Form factor
The form factor of a computer case characterizes, first of all, the internal volume. Main PC Form Factors:
—
Midi Tower. A representative of the tower family (tower cases) of medium size — about 45 cm in height with a width of 15-20 cm, with the number of external bays from 2 to 4. Most popular for middle-class home PCs.
—
Mini Tower. The most compact "vertical" case type, with a width of 15-20 cm, has a height of about 35 cm and (usually) less than 2 compartments with external access. Used mainly for office PCs that do not require high performance.
—
Full Tower. The tower case is one of the largest form factors for PCs today: 15-20 cm wide, 50-60 cm high, with up to 10 externally accessible bays. Most often in this form factor running advanced high performance PCs
—
Desktop. Enclosures designed for installation directly on the desktop. They often have the possibility of horizontal installation — in such a way that a monitor can be placed on top of the case — although there are also models that are installed strictly vertically. Anyway, "desktop" models are relatively small.
—
Cube Case. Cases having a cubic or close to it shape. They can have different sizes and are intended for different types of motherboards, this point in each case should be clar
...ified separately. Anyway, such cases have a rather original appearance, different from traditional "towers" and "desktops".Chipset
The model of the chipset used in the standard configuration of the PC.
A chipset can be described as a set of chips that provides the combined operation of the central processor, RAM, I / O devices, etc. It is this chipset that underlies any motherboard. Knowing the chipset model, you can find and evaluate its detailed characteristics; most users do not need such information, but for specialists it can be very useful.
Model
The specific model of the processor installed in the PC, or rather, its index within its series (see "Processor"). The full model name consists of the series name and this index — for example, Intel Core i3 3220; knowing this name, you can find detailed information about the processor (characteristics, reviews, etc.) and determine how suitable it is for your purposes.
Code name
The code name for CPU that the PC is equipped with.
This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters — general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.
Nowadays, chips with the following code names are relevant among Intel processors:
Coffee Lake (8th generation),
Coffee Lake (9th generation),
Comet Lake (10th generation) and
Rocket Lake (11th generation),
Alder Lake (12th generation),
Raptor Lake (13th generation),
Raptor Lake-S (14th generation). For AMD, the list looks like this:
Zen+ Picasso (3rd gen),
Zen2 Matisse (3rd gen),
Zen2 Renoir (4th gen),
Zen 3 Cezanne (5th gen),
Zen 3 Vermeer (5th gen),
Zen 4 Raphael (6th gen).
Cores
The number of cores in a complete PC processor.
The core is a part of the processor designed to process one stream of commands (and sometimes more, for such cases, see "Number of threads"). Accordingly, the presence of several cores allows the processor to work simultaneously with several such threads, which has a positive effect on performance. However note that a larger number of cores does not always mean higher computing power — a lot depends on how the interaction between command streams is organized, what special technologies are implemented in the processor, etc. So, only chips of the same purpose (desktop, mobile) and similar series (see "Processor") can be compared by the number of cores.
In general, single-core processors are practically not found in modern PCs.
Mainly desktop chips of the initial and middle level are made dual-core.
Four cores are found both in desktop CPUs of the middle and advanced class, and in mobile solutions. And
six-core and
eight-core processors are typical for high-performance desktop processors used in
workstations and gaming systems.
Threads
The number of threads supported by the bundled PC processor.
A thread in this case is a sequence of instructions executed by the kernel. Initially, each individual core is able to work with only one such sequence. However, among modern CPUs, more and more often there are models in which the number of threads is twice the number of cores. This means that the processor uses multi-threading technology, and each core works with two instruction sequences: when pauses occur in one thread, the core switches to another, and vice versa. This allows you to significantly increase performance without increasing the clock frequency and heat dissipation, however, such CPUs are also more expensive than single-threaded counterparts.
Speed
Clock speed of the CPU installed in the PC.
In theory, higher clock speeds have a positive effect on performance because they allow the CPU to perform more operations per unit of time. However, this indicator is rather weakly related to real productivity. The fact is that the actual capabilities of the CPU strongly depend on a number of other factors - the overall architecture, cache size, number of cores, support for special instructions, etc. As a result, you can compare by this indicator only chips from the same or similar series (see “CPU”), and ideally, also from the same generation. And that's pretty approximate.
TurboBoost / TurboCore
Processor clock speed when running in TurboBoost or TurboCore mode.
Turbo Boost technology is used in Intel processors, Turbo Core — AMD. The essence of this technology is the same both there and there: if some of the cores work under high load, and some are idle, then some tasks are transferred from more loaded cores to less loaded ones, which improves performance. This usually increases the clock frequency of the processor; this value is indicated in this paragraph. See above for more information on clock speed in general.
TurboBoost Max 3.0
Processor clock speed when running in TurboBoost Max 3.0 overclocking mode.
This mode is a kind of add-on over the original Turbo Boost (see above). The basic principle of its operation is that the most critical and "heavy" tasks are sent for execution to the fastest and most unloaded processor cores. This provides additional optimization of the CPU and increases its speed. As in normal Turbo Boost mode, the clock speed increases when using this function, so it is indicated separately.