Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   CPUs

Comparison AMD Ryzen 5 Renoir 4650G PRO OEM vs AMD Ryzen 5 Picasso 3400G BOX

Add to comparison
AMD Ryzen 5 Renoir 4650G PRO OEM
AMD Ryzen 5 Picasso 3400G BOX
AMD Ryzen 5 Renoir 4650G PRO OEMAMD Ryzen 5 Picasso 3400G BOX
Compare prices 2Compare prices 8
TOP sellers
Main
The frequency of the GPU is 1400 MHz.
SeriesRyzen 5Ryzen 5
Code nameRenoir (Zen 2)Picasso (Zen+)
SocketAMD AM4AMD AM4
Lithography7 nm12 nm
In box BOX (fan)
Cores and Threads
Cores6 cores4 cores
Threads12 threads8 threads
Multithreading
Speed
Clock speed3.7 GHz3.7 GHz
TurboBoost / TurboCore4.2 GHz4.2 GHz
Cache
L1 cache384 KB384 KB
L2 cache3072 KB2048 KB
L3 cache8 MB4 MB
Specs
IGPRadeon Vega 7Radeon Vega 11
TDP65 W65 W
InstructionMMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2
Multiplier37
Free multiplier
PCI Express3.03.0
Max. operating temperature95 °С95 °С
Passmark CPU Mark16910 score(s)9414 score(s)
Geekbench 415896 score(s)
Memory
Max. RAM64 GB
Max. DDR4 speed3200 MHz2933 MHz
Channels22
Added to E-Catalogjuly 2020june 2019

Code name

This parameter characterizes, firstly, the technical process (see above), and secondly, some features of the internal structure of processors. A new (or at least updated) codename is introduced to the market with each new CPU generation; chips of the same architecture are "coevals", but may belong to different series (see above). At the same time, one generation can include both one and several code names.

Here are the most common Intel codenames today: Cascade Lake-X (10th gen), Comet Lake (10th gen), Comet Lake Refresh (10th generation), Rocket Lake (11th generation), Alder Lake (12th generation), Raptor Lake (13th generation), Raptor Lake Refresh (14th generation).

For AMD, this list includes Zen+ Picasso, Zen2 Matisse, Zen2 Renoir, Zen3 Vermeer, Zen3 Cezanne, Zen4 Raphael, Zen4 Phoenix and Zen5 Granite Ridge.

Lithography

The technical process by which the CPU is manufactured.

The parameter is usually specified by the size of the individual semiconductor elements (transistors) that make up the processor integrated circuit. The smaller their size, the more advanced the technical process is considered: miniaturization of individual elements allows you to reduce heat generation, reduce the overall size of the processor and at the same time increase its flow Rate. CPU manufacturers are trying to move towards reducing the technical process, and the newer the processor, the lower the numbers you can see at this point.

The technical process is measured in nanometers (nm). In the modern arena of central processors, solutions made using the 7 nm, 10 nm, 12 nm process technology predominate, high-end CPU models are manufactured using the 4 nm and 5 nm process technology, 14 nm and 22 nm solutions are still afloat, and are rapidly fading into the background, but 28 nm and 32 nm occur periodically.

In box

This parameter does not so much indicate the difference in technical characteristics as it describes the packaging and computer Hardware.

- OEM. The tray package, or OEM, provides that the processor is supplied without a cooling system (CO) and without a branded box - the packaging is usually a simple antistatic bag. You need to select and install cooling for such a CPU separately. In addition, components in tray packaging often have a shorter warranty period than in the box version, and their additional equipment is more meager. On the other hand, such solutions are noticeably cheaper, and the absence of CO allows you to select it separately, without relying on the manufacturer’s choice.

BOX (without cooler). Processors packed in branded boxes, but not equipped with cooling systems (CO). Such packaging is more expensive than OEM, but the warranty period for “boxed” chips is usually much longer (for example, three years instead of one). The absence of a cooler, on the one hand, requires additional efforts to find and install a coolant; on the other hand, cooling can be selected according to your own criteria, without relying on the manufacturer’s choice. However, it is worth considering that when installing a cooler yourself, it is difficult to achieve the same efficiency from it as with a factory installation; This is especially critical if the CPU is planned to be intensively overc...locked; for such modes it is better to choose a box package with a cooler.

BOX (with cooler). Processors packed in branded boxes and equipped with cooling systems (CO). Box packaging itself is more expensive than OEM, but this is compensated by a number of advantages - in particular, more extensive packaging and a longer warranty period. As for the presence of a cooler in the kit, it further increases the overall cost of the CPU, but eliminates the need to bother with the selection and installation of a separate cooling system. It is worth noting that the factory installation of CO allows you to achieve higher efficiency than independent installation, so for high loads (including overclocking) this particular configuration option is best suited. On the other hand, before purchasing, you need to check whether there is enough space in the case for a cooler: complete coolers can be quite bulky, and removing them can be difficult.

MPK (with cooler, without box). The multipack package, or MPK for short, implies the delivery of a processor with a standard boxed cooling cooler, but without a box and accompanying documentation. The processor is usually packaged in a simple antistatic bag. The MPK package is more expensive than OEM due to the presence of a cooling system, but cheaper than BOX (with cooler) due to the absence of a box. At the same time, the multipack kit usually has a shorter warranty period than the BOX delivery option (with a cooler).

Cores

The number of physical cores provided in the processor design. The core is the part of the processor that is responsible for executing the instruction stream. The presence of multiple cores allows the CPU to work simultaneously with several tasks, which has a positive effect on performance. Initially, each physical core was intended to operate with one thread of commands, and the number of threads corresponded to the number of cores. However, today there are many processors that support multi-threading technologies and are capable of executing two streams of commands on each core at once. For more information about this, see “Amount of threads”.

Desktop processors have 2 cores (2 threads), as a rule, typical for budget models. 2 cores (4 threads) and 4 cores are typical for inexpensive mid-class solutions. 4 cores (8 threads), 6 cores, 6 cores (12 threads), 8 cores - a strong mid-range. 8 cores (16 threads), 10 cores, 12 cores, 16 cores and more are characteristic features of advanced models, including processors for servers and workstations.

At the same ti...me, it is worth considering that the actual capabilities of the CPU are determined not only by this parameter, but also by other characteristics - primarily by series and generation / architecture (see the corresponding paragraphs). It is not uncommon for situations where a more advanced and/or new dual-core processor turns out to be more powerful than a quad-core chip from a more modest series or an earlier architecture. So it makes sense to compare CPUs by the number of cores within the same series and generation.

Threads

The number of instruction streams that the processor can execute at the same time.

Initially, each physical core (see "Number of cores") was intended to execute one thread of instructions, and the number of threads corresponded to the number of cores. However, there are many processors today that support Hyper-threading or SMT (see below) and can run two threads on each core at once. In such models, the number of threads is twice the number of cores — for example, 8 threads will be indicated in a quad-core chip.

In general, a higher number of threads, other things being equal, has a positive effect on speed and efficiency, but increases the cost of the processor.

L2 cache

The amount of Level 2 (L2) cache provided by the processor.

Cache is an intermediate memory buffer into which the most frequently used data from RAM is written during processor operation. This speeds up access to them and has a positive effect on system performance. The larger the cache, the more data can be stored in it for quick access and the higher the performance. Level 2 cache volume can reach 12 MB, the vast majority of modern processors have such a cache.

L3 cache

The amount of cache level 3 (L3) provided in the processor.

Cache is an intermediate memory buffer into which the most frequently used data from RAM is written when the processor is running. This speeds up access to them and has a positive effect on system performance. The larger the cache, the more data can be stored in it for quick access and the higher the performance.

IGP

Model of the integrated video core installed in the processor. See "Integrated Graphics" for details on the core itself. And knowing the name of the graphics chip model, you can find its detailed characteristics and clarify the performance of the processor when working with video.

In terms of specific models, Intel processors use HD Graphics, specifically 510, 530, 610, 630 and UHD Graphics with models 610, 630, 730, 750, 770. AMD chips, in turn, can carry Radeon Graphics, Radeon R5 series, Radeon R7 series, and Radeon RX Vega graphics cards.

At the same time, processors without a graphics core are appropriate for purchase if you plan to fully assemble a PC with a graphics card. In this case, overpaying for a processor with a graphics core does not make sense.

Instruction

Support by the processor of various sets of additional commands. These can be instructions that optimize the operation of the processor as a whole or with applications of a certain type (for example, multimedia, or 64-bit), prevent certain types of viruses from running on the computer, etc. Each manufacturer has its own assortment of instructions for CPUs.
AMD Ryzen 5 Renoir often compared
AMD Ryzen 5 Picasso often compared