United Kingdom
Catalog   /   Computing   /   Components   /   Motherboards

Comparison Asus PRIME B450M-K II vs Asus PRIME B450M-A II

Add to comparison
Asus PRIME B450M-K II
Asus PRIME B450M-A II
Asus PRIME B450M-K IIAsus PRIME B450M-A II
Compare prices 12Compare prices 12
TOP sellers
Featuresfor home/officefor home/office
SocketAMD AM4AMD AM4
Form factormicro-ATXmicro-ATX
Power phases66
VRM heatsink
Size (HxW)226x221 mm244x244 mm
Chipset
ChipsetAMD B450AMD B450
BIOSAmiAmi
UEFI BIOS
RAM
DDR42 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency4400 MHz4400 MHz
Max. memory64 GB128 GB
XMP
Drive interface
SATA 3 (6Gbps)46
M.2 connector11
M.21xSATA/PCI-E 4x1xSATA/PCI-E 4x
M.2 version1x3.0
Integrated RAID controller
 /Raid 0, 1, 10/
 /Raid 0, 1, 10/
Expansion slots
1x PCI-E slots22
PCI-E 16x slots11
PCI Express3.03.0
Internal connections
TPM connector
USB 2.022
USB 3.2 gen111
Video outputs
D-Sub output (VGA)
DVI outputDVI-DDVI-D
HDMI output
HDMI versionv.2.0bv.2.0b
Integrated audio
Audiochip
Realtek ALC887 /897/
Realtek ALC887 /897/
Sound (channels)7.17.1
Network interfaces
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerRealtek RTL8111HRealtek RTL8111H
External connections
USB 2.02
USB 3.2 gen144
USB 3.2 gen22
PS/211
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors23
Added to E-Catalogapril 2021april 2021

VRM heatsink

The design of the motherboard has a separate heatsink for VRM.

VRM is a voltage regulation module through which power from a computer power supply is supplied to the processor. This module steps down the standard power supply voltage (+5V or +12V) to a lower value required by the processor (usually just over 1V). At high loads, the voltage regulator can get very hot, and without a specialized cooling system, the matter can end with overheating and even burnout of parts. The VRM heatsink reduces the likelihood of such situations; it can be useful for any CPU, and highly desirable if the board is planned to be used with a powerful high-end processor (especially overclocked).

Size (HxW)

Motherboard dimensions in height and width. It is assumed that the traditional placement of motherboards is vertical, so in this case one of the dimensions is called not the length, but the height.

Motherboard sizes are largely determined by their form factors (see above), however, the size of a particular motherboard may differ slightly from the standard adopted for this form factor. In addition, it is usually easier to clarify the dimensions according to the characteristics of a particular motherboard than to look for or remember general information on the form factor. Therefore, size data can be given even for models that fully comply with the standard.

The third dimension — thickness — is considered less important for a number of reasons, so it is often omitted.

DDR4

The number of slots for DDR4 memory sticks provided in the motherboard.

DDR4 is a further (after the third version) development of the DDR standard, released in 2014. Improvements compared to DDR3 are traditional — an increase in operating speed and a decrease in power consumption; The volume of one module can be from 2 to 128 GB. It is this RAM standard that most modern motherboards are designed for; the number of slots for DDR4 is usually 2 or 4, less often — 6 or more.

Max. memory

The maximum amount of RAM that can be installed on the motherboard.

When choosing according to this parameter, it is important to take into account the planned use of the PC and the real needs of the user. So, volumes up to 32 GB inclusive are quite enough to solve any basic problems and run games comfortably, but without a significant reserve for an upgrade. 64 GB is the optimal option for many professional use cases, and for the most resource-intensive tasks like 3D rendering, 96 GB or even 128 GB of memory will not be a limit. The most “capacious” motherboards are compatible with volumes of 192 GB or more - they are mainly top-end solutions for servers and HEDT (see “In the direction”).

You can choose this parameter with a reserve – taking into account a potential RAM upgrade, because installing additional RAM sticks is the simplest way to increase system performance. Taking this factor into account, many relatively simple motherboards support very significant amounts of RAM.

XMP

The ability of the motherboard to work with RAM modules that support XMP (Extreme Memory Profiles) technology. This technology was developed by Intel; it is used in motherboards and RAM blocks and only works if both of these system components are XMP compliant. A similar technology from AMD is called AMP.

The main function of XMP is to facilitate system overclocking (“overclocking”): special overclocking profiles are “sewn” into the memory with this technology, and if desired, the user can only select one of these profiles without resorting to complex configuration procedures. This is not only easier, but also safer: every profile added to the bar is tested for stability.

SATA 3 (6Gbps)

Number of SATA 3 ports on the motherboard.

SATA is now the standard interface for connecting internal drives (mainly HDDs) and optical drives. One device is connected to one such connector, so the number of SATA ports corresponds to the number of internal drives / drives that can be connected to the motherboard through such an interface. A large number ( 6 SATA ports and more) is necessary in case of active use of several hard drives and other peripherals. For domestic use, 4 is enough. SATA 3, as the name suggests, is the third version of this interface, operating at a total speed of about 6 Gbps; the useful speed, taking into account the redundancy of the transmitted data, is about 4.8 Mbps (600 MB / s) — that is, twice as much as in SATA 2.

Note that different SATA standards are quite compatible with each other in both directions: older drives can be connected to newer ports, and vice versa. The only thing is that the data transfer rate will be limited by the capabilities of the slower version, and in some cases it may be necessary to reconfigure the drives with hardware (switches, jumpers) or software. It is also worth saying that SATA 3 is the newest and most advanced variation of SATA today, but the capabilities of this standard are not enough to unlock the full potential of high-speed SSDs. Therefore, SATA 3 is mainly used for hard drives and low-cost SSDs, faster drives are conn...ected to specially designed connectors like M.2 or U.2 (see below).

M.2 version

The version of the M.2 interface determines both the maximum data transfer rate and the supported devices that can be connected via physical M.2 connectors (see the corresponding paragraph).

The version of the M.2 interface in the specifications of motherboards is usually indicated by the number of connectors themselves and by the PCI-E revision provided for in each of them. For example, the entry “3x4.0” means three connectors capable of supporting PCI-E 4.0; and the designation “2x5.0, 1x4.0” means a trio of connectors, two of which support PCI-E 4.0, and another one supports PCI-E 5.0.

USB 2.0

The number of USB 2.0 connectors installed on the back of the motherboard.

Recall that USB is the most popular modern connector for connecting various external peripherals — from keyboards and mice to specialized equipment. And USB 2.0 is the oldest version of this interface that is relevant today; it is noticeably inferior to the newer USB 3.2 both in terms of speed (up to 480 Mbps), and in terms of power supply and additional functionality. On the other hand, even such characteristics are often enough for undemanding peripherals (like the same keyboards / mice); and devices of newer versions can be connected to the connectors of this standard — there would be enough power supply. So this version of USB is still found in modern motherboards, although there are fewer and fewer new models with USB 2.0 connectors.

Note that in addition to the connectors on the rear panel, connectors on the board itself (more precisely, ports on the PC case connected to such connectors) can also provide a USB connection. See below for more on this.

USB 3.2 gen2

The number of native USB 3.2 gen2 connectors provided on the back of the motherboard. In this case, we mean traditional, full-size USB A ports.

USB 3.2 gen2(formerly known as USB 3.1 gen2 and simply USB 3.1) is the evolution of USB 3.2 after version 3.2 gen1 (see above). This standard provides connection speeds up to 10 Gbps, and to power external devices in such connectors, USB Power Delivery technology (see below) can be provided, which allows you to output up to 100 W per device (however, Power Delivery support is not mandatory, its presence should be specified separately). Traditionally for the USB standard, this interface is backwards compatible with previous versions — in other words, you can easily connect a device supporting USB 2.0 or 3.2 gen1 to this port (unless the speed will be limited by the capabilities of a slower version).

The more connectors provided in the design, the more peripheral devices can be connected to the motherboard without the use of additional equipment (USB splitters). In some models of motherboards, the number of ports of this type is 5 or even more. At the same time, we note that in addition to the connectors on the rear panel, connectors on the board itself (more precisely, ports on the case connected to such connectors) can also provide a USB connection. See below for more on this.
Asus PRIME B450M-K II often compared
Asus PRIME B450M-A II often compared