United Kingdom
Catalog   /   Photo   /   Digital Cameras

Comparison Canon EOS R6 body vs Sony A7 III body

Add to comparison
Canon EOS R6  body
Sony A7 III  body
Canon EOS R6 bodySony A7 III body
Compare prices 5Compare prices 8
User reviews
0
0
0
10
TOP sellers
Main
5-axis stabilization with matrix shift. Dual Pixel autofocus with tracking of animals, human face or eyes. Ability to record video in RAW format (30 fps, or 120 fps in 4K resolution).
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
DxOMark rating9096
Sensor
Sensor
CMOS (CMOS) /digic X processor/
CMOS (CMOS) BSI /bionz X processor/
Sensor sizefull frame
full frame /35.9х24 мм/
Total MP2124.7
Effective MP number2024.3
Maximum image size5472x3648 px6000x4000 px
Light sensitivity (ISO)50-204800100-204800
Sensor cleaning
RAW format recording
Lens
Mount (bayonet)Canon RFSony E
Manual focus
Image stabilizationwith matrix shift
with matrix shift /can work with optical stabilization of the lens (5 axes will be involved)/
Photo shooting
Frames per series (JPEG)177 шт
Frames per series (RAW)89 шт
HDR
2 control dials
White balance measuring
Exposure compensation± 3 EV, in 1/2 or 1/3 EV increments± 5 EV, in 1/2 or 1/3 EV increments
Auto bracketing
 /± 5 (3.5 frames at 1/3 EV, 1/2 EV, 2/3 EV, 1 EV, 2 EV steps)/
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 pix 120 fps1920x1080 pix 120 fps
Ultra HD (4K)3840x2160 pix 60 fps3840x2160 pix 30 fps
File recording formatsMPEG-4, H.264, H.265MPEG-4, AVCHD, XAVC S
Manual video focus
Connection ports
USB C
HDMI v 2.1
headphone Jack
microphone Jack
USB C
micro HDMI v 1.4
headphone Jack
microphone Jack
Focus
Autofocus modes
one shot
AI focus
tracking
in face
by smile
animal in frame
one shot
 
tracking
in face
by smile
 
Focus points1053 шт693 шт
Touch focus
Front / back adjustment?
Contour enhancement
Viewfinder and shutter
Viewfinderelectronicelectronic
Viewfinder crop0.76 x0.78 x
Frame coverage100 %
Shutter speed30 - 1/8000 sec30 -1/8000 sec
Continuous shooting
20 fps /mechanical shutter up to 12 fps/
10 fps
Shutter typemechanicalmechanical
Screen
Screen size3 ''3 ''
Screen resolution1620 thousand pixels921 thousand pixels
Touch screen
Rotary display
Memory and communications
2 card slots
Memory cards types
SD, SDHC, SDXC, CFExpress /Eye-Fi, UHS-II, CFExpress Type-B/
SD, SDHC, SDXC, MemoryStick /UHS-II/
Communications
Wi-Fi
Bluetooth
 
smartphone control
Wi-Fi
Bluetooth
NFC
smartphone control
Flash
Built-in flash
External flash connect
Power source
Power source
battery
battery
Battery modelLP-E6NHNP-FZ100
Shots per charge360 шт610 шт
Power supply USB-C (Power Delivery)
General
Console/synchronizer modelRM-VPR1, RMT-DSLR2
Materialmagnesium alloyaluminium/plastic
Protectiondustproof, waterproofdustproof, waterproof
Dimensions (WxHxD)138x98x88 mm127х96х74 mm
Weight680 g650 g
Color
Added to E-Catalogjuly 2020february 2018

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Sensor

— CCD (CCD). Abbreviation for Charge-Coupled Device. In such sensors, information is read from the photosensitive element according to the “line at a time” principle — an electronic signal is output to the image processor in the form of separate lines (there is also a “frame at a time” variant). In general, such matrices have good characteristics, but they are more expensive than CMOS. In addition, they are poorly suited for some specific conditions — for example, shooting with point light sources in the frame — which is why you have to use various additional technologies in the camera, which also affect the cost.

— CMOS (CMOS). The main advantages of CMOS matrices are ease of manufacture, low cost and power consumption, more compact dimensions than those of CCDs, and the ability to transfer a number of functions (focus, exposure metering, etc.) directly to the sensor, thus reducing the dimensions of the camera. In addition, the camera processor can read the entire image from such a matrix at once (rather than line by line, as in CCD); this avoids distortion when shooting fast-moving objects. The main disadvantage of CMOS is the increased possibility of noise, especially at high ISO values.

— CMOS (CMOS) BSI. BSI is an abbreviation for the English phrase "Backside Illumination". This is the name of "inverted" CMOS sensors, the light on which does not penetrate from the side of the photodiodes, but from the back of the matrix (from the side of the subst...rate). With this implementation, the photodiodes receive more light, since it is not blocked by other elements of the image sensor. As a result, back-illuminated sensors boast high light sensitivity, which allows you to create images of better quality with less noise when shooting in low light conditions. BSI CMOS sensors require less light to properly expose a photo. In production, back-illuminated sensors are more expensive than traditional CMOS sensors.

— LiveMOS. A variety of matrices made using the technology of metal oxide semiconductors (MOS, MOS — Metal-Oxide Semiconductor). Compared to CMOS sensors, it has a simplified design, which provides less tendency to overheat and, as a result, a lower noise level. It is well suited for the "live" viewing mode (viewing in real time) of the image from the matrix on the screen or in the camera's viewfinder, which is why it received the word "Live" in the title. They also feature high data transfer rates.

Total MP

The total number of individual light sensitive dots (pixels) provided in the camera's sensor. Denoted in megapixels - millions of pixels.

The total number of MPs, as a rule, is greater than the number of megapixels from which the frame is directly built (for more details, see "Effective number of MPs"). This is due to the presence of service areas on the matrix. In general, this parameter is more of a reference than practically significant: a larger total number of MPs with the same size and effective resolution means a slightly smaller size of each pixel, and, accordingly, an increased likelihood of noise (especially at high ISO values).

Effective MP number

The number of pixels (megapixels) of the matrix directly involved in the construction of the image, in fact — the number of points from which the captured image is built. Some manufacturers, in addition to this parameter, also indicate the total number of MPs, taking into account the service areas of the matrix. However, it is the effective number of MPs that is considered the main indicator — it is this that directly affects the maximum resolution of the resulting image (see “Maximum image size”).

A megapixel is 1 million pixels. Numerous megapixels ensures high resolution of the captured photos, but is not a guarantee of high-quality images — much also depends on the size of the sensor, its light sensitivity (see the relevant glossary items), as well as hardware and software image processing tools used in the camera. Note that for small matrices, high resolution can sometimes be more of an evil than a blessing — such sensors are very prone to the appearance of noise in the image.

Maximum image size

The maximum size of photos taken by the camera in normal (non-panoramic) mode. In fact, this paragraph indicates the highest resolution of photography — in pixels vertically and horizontally, for example, 3000x4000. This indicator directly depends on the resolution of the matrix: the number of dots in the image cannot exceed the effective number of megapixels (see above). For example, for the same 3000x4000, the matrix must have an effective resolution of at least 3000*4000 = 12 million dots, that is, 12 MP.

Theoretically, the larger the size of the photo, the more detailed the image, the more small details can be conveyed on it. At the same time, the overall image quality (including the visibility of fine details) depends not only on resolution, but also on a number of other technical and software factors; see "Effective MP number" for more details.

Light sensitivity (ISO)

The sensitivity range of a digital camera matrix. In digital photography, light sensitivity is expressed in the same ISO units as in film photography; however, unlike film, the light sensitivity of the sensor in a digital camera can be changed, which gives you more options for adjusting shooting parameters. High maximum light sensitivity is important if you have to use a lens with a low aperture (see Aperture), as well as when shooting dimly lit scenes and fast-moving objects; in the latter case, high ISO allows you to use low shutter speeds, which minimizes image blur. However, note that with an increase in the value of the applied ISO, the level of noise in the resulting images also increases.

Sensor cleaning

The presence in the camera of a special mechanism for cleaning the matrix from dust and other contaminants.

This function is found only in models with interchangeable lenses — "reflex cameras" and MILC (see "Camera type"). When replacing the lens in such cameras, the sensor turns out to be open, and the probability of its contamination is quite high; and extraneous particles on the matrix, at best, lead to the appearance of extraneous artifacts, at worst, to damage to the sensor. To avoid this, cleaning systems are provided. They usually work on the principle of ultrasound: high-frequency vibration "resets" debris from the surface of the sensor.

Note that no cleaning system is perfect — in particular, such systems are “too tough” for condensate, salt deposits and other similar contaminants. So the matrix may still need manual cleaning (ideally, in a service centre). Nevertheless, this function allows you to effectively deal with at least dust, which greatly simplifies the life of the user.

Mount (bayonet)

The type of bayonet mount — mount for interchangeable lenses — provided in a SLR or MILC camera (see "Camera type"). Bayonets come in different sizes, and interchangeable lens specifications usually indicate which mount it is designed for. Most often, mounts of different types are not compatible with each other, but there are exceptions (sometimes directly, sometimes using adapters).

Also note that one brand can use different mounts for different classes of cameras — and vice versa, one mount can be used by several manufacturers. So, Canon releases cameras with mounts EF-M, EF-S, EF and Canon RF. Leica has Leica M, Leica SL, Leica TL. Nikon has in its arsenal Nikon 1, Nikon F, Nikon Z. Pentax — Pentax 645, Pentax K, Pentax Q. Samsung offers NX and NX-M mounts. Sony cameras have Sony A and Sony E, Fuji has Fujifilm G and Fujifilm X. And as an example of a mount used by different brands, one can cit...e Micro 4/3, which is widespread in Olympus and Panasonic cameras.

Frames per series (JPEG)

The highest number of shots a camera can capture “in one go” in JPEG continuous shooting.

The technical features of modern digital cameras are such that during continuous shooting, photos have to be recorded in a special buffer, and only then, after the end of the series, they can be copied to a memory card. This buffer has a limited size, so the number of frames in one series is also limited. At the same time, we note that this indicator is usually indicated for shooting at the highest possible resolution (see "Maximum image size"); at lower resolutions, the volume of each image is reduced, and the number of frames in the series may turn out to be more than stated in the specifications.

JPEG, the most popular digital photography format today, is smaller and requires less processing power than RAW (see "Recording in RAW Format"). Therefore, in a JPEG series, as a rule, more frames are available to the photographer. However, in some models that have two separate buffers (for RAW and JPEG), it may be the other way around.
Canon EOS R6 often compared
Sony A7 III often compared