United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Acer Predator Helios 16 PH16-71 [PH16-71-71AV] vs Asus ROG Strix G16 2023 G614JV [G614JV-AS73]

Add to comparison
Acer Predator Helios 16 PH16-71 (PH16-71-71AV)
Asus ROG Strix G16 (2023) G614JV (G614JV-AS73)
Acer Predator Helios 16 PH16-71 [PH16-71-71AV]Asus ROG Strix G16 2023 G614JV [G614JV-AS73]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size16 "16 "
Screen typeIPSIPS
Surface treatmentmatteanti-glare
Screen resolution2560x1600 (16:10)1920x1200 (16:10)
Response time3 ms7 ms
Refresh rate165 Hz165 Hz
Brightness500 nt
Colour gamut (sRGB)100 %100 %
Pantone certification
TÜV Rheinland certificate
HDRHDR10, Dolby Vision
NVIDIA G-Sync
Adaptive-Sync
CPU
SeriesCore i7Core i7
Model13700HX13650HX
Code nameRaptor Lake (13th Gen)Raptor Lake (13th Gen)
Processor cores16 (8P+8E)14 (6P+8E)
Total threads2420
CPU speed1.5 GHz1.9 GHz
TurboBoost / TurboCore frequency5 GHz4.9 GHz
CPU TDP55 W55 W
3DMark0615688 score(s)
Passmark CPU Mark35654 score(s)
RAM
RAM16 GB16 GB
Max. RAM32 GB32 GB
RAM typeDDR5DDR5
RAM speed4800 MHz4800 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 4060RTX 4060
Video memory8 GB8 GB
Memory typeGDDR6GDDR6
GPU TDP140 W140 W
Advanced Optimus
VR
3DMark0649423 points50607 points
3DMark Vantage P90275 points90275 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity1024 GB512 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 4.0 4x
M.2 drive size22x80 mm22x80 mm
Additional M.2 connector11
Addittional M.2 connectors interfacePCI-E 4.0 4xPCI-E 4.0 4x
Additional M.2 drive size22x80 mm22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 2.1
Card reader
 /microSD/
USB 3.2 gen11 pc
USB 3.2 gen222
USB C 3.2 gen21 pc
USB421
Thunderbolt interfacex2 v4x1 v4
Alternate Mode
Monitors connection33
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
Bluetoothv 5.1v 5.2
Multimedia
Webcam1920x1080 (Full HD)1280x720 (HD)
Camera shutter
Speakers22
Audio decodersDTS X UltraDolby Atmos
Security
kensington / Noble lock
 
Keyboard
BacklightRGB per keyRGB per key
Lighthing syncAsus Aura Sync
Key designisland typeisland type
Num block
Additional keys59
Input deviceglass touchpadtouchpad
Battery
Battery capacity90 W*h90 W*h
Operating time5 h
Powered by USB-C (Power Delivery)
Power Delivery65 W100 W
Fast charge
Charging time50% in 30 min
Power supply Included330 W240 W
General
Preinstalled OSWindows 11 HomeWindows 11 Home
Materialaluminium / plasticaluminium / plastic
Dimensions (WxDxT)358x279x27 mm354x264x30 mm
Weight2.9 kg2.5 kg
Color
Added to E-Catalogjune 2023may 2023

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Screen resolution

The resolution of the screen installed in the laptop — that is, the size of the screen in pixels horizontally and vertically.

Higher resolution, on the one hand, gives a sharper, more detailed image; on the other hand, it increases the cost of the laptop. The latter is connected not only with the cost of the displays themselves, but also with the fact that in order to work effectively at high resolutions, you need the appropriate filling (primarily a graphics card). This is especially true in games; so if you are looking for a laptop with a high-resolution screen that can effectively "run" modern games — you should pay attention not only to the characteristics of the display, but also to other data (the type and parameters of the graphics card, test results, the ability to work with certain games — see everything below). On the other hand, if the device is planned to be used for simple tasks such as working with documents, surfing the Internet and watching videos, you can not pay much attention to the “hardware” parameters: anyway, they are selected so that the laptop is guaranteed to be able to cope with such tasks on full resolution of the "native" screen.

As for specific numbers, the resolution options that are relevant today can be divided into 4 groups: HD (720), Full HD (1080), Quad HD and UltraHD 4K. Here is a mor...e detailed description of them:

— HD (720). This category includes all displays that have a vertical size of less than 1080 pixels. The most popular HD resolution in modern laptops is 1366x768; in devices larger than 15.6 ", 1600x900 is also often found. Other values quite exotic and are rarely used. In general, screens of this standard are now typical mainly for entry-level laptops.

— Full HD (1080). Initially, the Full HD standard provides a frame size of 1920x1080, and it is this resolution that is most often used in laptop screens from this category. However, in addition to this, other resolution options are also included in this format, where the vertical size is at least 1080 pixels, but does not reach 1440 pixels. Examples include 1920x1200 and 2560x1080. In general, Full HD displays provide a good balance between cost, image quality and laptop hardware requirements. Because of this, nowadays they are extremely widespread; matrices of this standard can be found even in low-cost devices, although they are mainly used in more advanced technology.

— Quad HD. A transitional option between the popular Full HD 1080 (see above) and the high-end and expensive UltraHD 4K. The vertical size of such screens starts from 1440 pixels and can reach 2000 pixels. Note that QuadHD resolutions are especially popular in Apple laptops; most often, such devices have 2560x1600 screens, although there are other options.

— Ultra HD 4K. The most advanced standard used in modern laptops. The vertical size of such screens is at least 2160 dots (up to 2400 in some configurations); the classic resolution of a modern UltraHD matrix is 3840x2160, but there are other values. Anyway, a 4K display allows for high image quality, however, it costs accordingly — including due to the corresponding requirements for a graphics adapter; in addition, to work with high resolutions, it can be more convenient to connect an external monitor to the laptop. Thus, such screens are used relatively rarely, and mainly among premium laptops.

Response time

Screen response time to a control signal — in other words, the time between the receipt of such a signal on the matrix and the switching of pixels to a given mode.

Theoretically, the lower the response time, the better the screen handles with dynamic scenes, the higher the frame rate on it can be achieved. At the same time, it is worth noting that almost all modern matrices have sufficient response speed to effectively process the classic frame rate of 60 Hz — and, recall, it is quite enough for most cases. So paying attention to this parameter makes sense, first of all, if you are purchasing an advanced gaming model, the screen of which operates at a frame rate of more than 60 Hz. In other cases, the response time is often not indicated at all.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Pantone certification

This feature means that the laptop screen has received the Pantone Validated certification.

Pantone is a professional colour system created by the company of the same name and widely used in design and printing. One of Pantone's basic ideas is that each colour should remain the same at all stages of work — from agreeing on a general idea to printing / releasing the final product; To do this, all shades covered by the system are assigned code names, which are used in the work. In the case of laptops, Pantone certification means that when working with materials and software tools that use a given colour scheme, the colours on the screen will match the actual Pantone hues as closely as possible.

We emphasize that there is no question of perfect correspondence (LCD matrices are not physically capable of adequately displaying some shades); in addition, screens with such certification may have different colour gamuts — both in percentages and in the systems used for designation (sRGB, Adobe RGB, DCI P3 — see above). However, even if the colour is beyond the capabilities of the screen, it will be displayed as accurately as possible. Therefore, for professional tasks associated with intensive use of Pantone, it is worth choosing monitors with official certification; An example of such tasks is the printing of image printing.

TÜV Rheinland certificate

Laptop display certification for safe blue light emission levels and panel flicker rates. The presence of a TÜV Rheinland certificate confirms that the screen is comfortable for the eyes.

TÜV Rheinland is a large international concern headquartered in Cologne, Germany, providing a wide range of audit services. The company's specialists have developed and approved a number of tests for the compliance of the screens of mobile devices, monitors and TVs with the required level of eye protection from the harmful effects of display radiation on the user's vision on the other side of the screen. The authoritative opinion of TÜV Rheinland is respected in the tech community. Certificates from this body are issued to successfully tested electronics for the implementation of blue light filtering and screen flicker suppression technologies.

HDR

HDR technology format supported by the laptop.

This technology is designed to expand the range of brightness reproduced by the laptop screen; Simply put, an HDR screen will display brighter whites and darker blacks than a regular matrix. In fact, this can significantly improve image quality. First, the expansion of the dynamic range contributes to the brightness and fidelity of colours on the screen; secondly, the visibility of individual details in very bright or very dark areas of the frame is preserved (whereas on a normal screen such details often “sink” in solid white or black).

Note that in order to fully use this function, you need not only a laptop with HDR, but also the corresponding content (video files recorded in HDR, games where this technology is implemented, etc.). In addition, the laptop must support the HDR format used by the content being played. Nowadays, you can find such options:

— HDR10. Historically the first of the consumer HDR formats, less advanced than those described below, but extremely widespread. In particular, HDR10 is supported by almost all streaming services that provide HDR content at all, and it is also common for Blu-ray discs. Allows you to work with a colour depth of 10 bits (hence the name). At the same time, devices of this format are also compatible with content in HDR10 +, although its quality will be limited by the capabilities of the original HDR10.

...— HDR10+. An improved version of HDR10. With the same colour depth (10 bits), it uses the so-called dynamic metadata, which allows transmitting information about the colour depth not only for groups of several frames, but also for individual frames. This results in an additional improvement in colour reproduction.

Dolby Vision. An advanced standard used particularly in professional cinematography. Allows you to achieve a colour depth of 12 bits, uses the dynamic metadata described above, and also makes it possible to transmit two image options at once in one video stream — HDR and normal (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in laptops it is almost guaranteed to be combined with at least HDR10, and even with HDR10 +.

NVIDIA G-Sync

Laptop support for NVIDIA G-Sync technology.

This feature is only found on models equipped with discrete NVIDIA graphics cards. It is used to match the frame rate of the screen and the frame rate of the signal arriving at it — so that these frequencies match. This avoids flickering, twitching, and other image artifacts that can occur due to out-of-sync. This feature is especially useful for games where the frame rate of the video signal can "float" depending on the load on the graphics core; in fact, most laptops with G-Sync are specifically for gaming.

A similar solution for AMD video cards is called FreeSync.

Adaptive-Sync

Laptop screen support for VESA Adaptive-Sync technology.

The feature aims to synchronize the refresh rate of the display with the frame rate of the GPU to reduce latency, minimize artifacts, and eliminate visual tearing in the image. Adaptive-Sync-certified screens should run at refresh rate of 120Hz by default, and the frame rate should be able to drop to 60Hz. The actual response time of such displays should be less than 5 ms.

It is important to note that VESA Adaptive-Sync technology is only available for DisplayPort 1.2a or higher.
Acer Predator Helios 16 PH16-71 often compared
Asus ROG Strix G16 (2023) G614JV often compared