Dark mode
United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo V15 G4 AMN [82YU00UJRA] vs Acer Aspire 3 A315-24P [A315-24P-R2WA]

Add to comparison
Lenovo V15 G4 AMN (82YU00UJRA)
Acer Aspire 3 A315-24P (A315-24P-R2WA)
Lenovo V15 G4 AMN [82YU00UJRA]Acer Aspire 3 A315-24P [A315-24P-R2WA]
Outdated ProductOutdated Product
User reviews
0
0
2
0
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentanti-glarematte
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness300 nt250 nt
Contrast800 :11350 :1
Colour gamut (sRGB)51 %
Colour gamut (NTSC)45 %45 %
TÜV Rheinland certificate
CPU
SeriesRyzen 5Ryzen 5
Model7520U7520U
Code nameMendocino (Zen 2)Mendocino (Zen 2)
Processor cores44
Total threads88
CPU speed2.8 GHz2.8 GHz
TurboBoost / TurboCore frequency4.3 GHz4.3 GHz
CPU TDP15 W15 W
Passmark CPU Mark9802 score(s)9657 score(s)
RAM
RAM16 GB16 GB
RAM typeLPDDR5LPDDR5
RAM speed5500 MHz5200 MHz
Slotsbuilt-inbuilt-in
Graphics card
Graphics card typeintegratedintegrated
Graphics card seriesAMD RadeonAMD Radeon
Graphics card modelRadeon 610MRadeon 610M
3DMark0613875 points13875 points
3DMark Vantage P7833 points7833 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity256 GB512 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 3.0 4x
M.2 drive size22x42 mm22х80 mm
Connections
Connection ports
HDMI
v 1.4b
HDMI
v 2.1
Card reader
USB 3.2 gen122
USB C 3.2 gen11 pc
USB C 3.2 gen21 pc
Alternate Mode
Monitors connection12
LAN (RJ-45)1 Gbps
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 6 (802.11ax)
Bluetoothv 5.1v 5.1
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Security
kensington / Noble lock
kensington / Noble lock
Keyboard
Backlightis absentis absent
Key designisland typeisland type
Num block
Additional keys4
Waterproof
Input devicetouchpadtouchpad
Battery
Battery capacity38 W*h40 W*h
Operating time14.4 h13.5 h
Powered by USB-C (Power Delivery)
Fast charge
Charging time80% in 60 min
Power supply Included65 W45 W
General
Preinstalled OSno OSno OS
MIL-STD-810 Military Standard
Materialmatte plasticaluminium / plastic
Dimensions (WxDxT)359x236x20 mm363х238х19 mm
Weight1.65 kg1.78 kg
Color
Added to E-Catalogjune 2023april 2023

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 nt and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 nt. And in the most advanced models, this parameter can be 350 – 400 nt and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (sRGB)

The colour gamut of the laptop matrix according to the Rec.709 colour model or according to sRGB.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, sRGB and Rec.709 are the most popular of today's colour models; they have the same range and differ only in the scope (sRGB is used in computers, Rec. 709 is used in HDTV). Therefore, the closer the colour gamut is to 100%, the more accurately the colours on the screen will match the colours that were originally intended by the creator of the film, game, etc. At the same time, note that such accuracy is not particularly needed in everyday use — it critical only for professional work with colour; and even in such cases, it is more convenient to buy a separate monitor with a wide colour gamut for a laptop, rather than looking for a laptop with a high-quality (and, accordingly, expensive) matrix.

TÜV Rheinland certificate

Laptop display certification for safe blue light emission levels and panel flicker rates. The presence of a TÜV Rheinland certificate confirms that the screen is comfortable for the eyes.

TÜV Rheinland is a large international concern headquartered in Cologne, Germany, providing a wide range of audit services. The company's specialists have developed and approved a number of tests for the compliance of the screens of mobile devices, monitors and TVs with the required level of eye protection from the harmful effects of display radiation on the user's vision on the other side of the screen. The authoritative opinion of TÜV Rheinland is respected in the tech community. Certificates from this body are issued to successfully tested electronics for the implementation of blue light filtering and screen flicker suppression technologies.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).

RAM speed

The clock speed of the RAM installed in the laptop.

The higher the frequency (with the same type and amount of memory) — the higher the performance of RAM in general and the faster the laptop will cope with resource-intensive tasks. However modules with the same frequency may differ somewhat in actual performance due to differences in other characteristics; but this difference becomes significant only in very specific cases, for the average user it is not critical. As for specific values, the most popular modules on the modern market are 2400 MHz, 2666 MHz, 2933 MHz and 3200 MHz. Memory at 2133 MHz or less is found mainly in outdated and low-cost devices, and in high-performance configurations this parameter is 2933 MHz, 3200 MHz, 4266 MHz, 4800 MHz, 5200 MHz, 5500 MHz, 5600 MHz and more.

Drive capacity

The capacity of the drive installed in the laptop. If there are several separate drives (for example, HDD + SSD, see "Drive type") — this item indicates the volume of the most capacious drive (in our example — HDD).

A larger drive allows you to store more data, but it also comes at a higher cost. At the same time, it is worth remembering that the price also depends on the type of media: for example, SSDs are much more expensive than hard drives of the same volume. So it is best to directly compare drives of the same type with each other. As for specific volumes, the most modest figures are typical for configurations with pure solid-state memory — SSD of one type or another or eMMC (see "Drive type"): among them you can find solutions for 240 – 360 GB and even 128 GB or less . Hard drive capacity actually starts at 480 – 512 GB ; 1TB storage capacity is average, and the most capacious modern laptops are equipped with storage of 2TB or even more.

M.2 drive interface

The connection interface used by the M.2 SSD installed in the laptop (see "Drive type").

One of the features of the M.2 connector and drives for it is that they can use two different connection interfaces: PCI-E (in one form or another) or SATA. We emphasize that this paragraph indicates the data of the SSD module; the connector itself may provide other interface options, including more advanced ones — see "M.2 connector interface" (for example, a drive with a PCI-E 3.0 2x connection can be placed in a connector that also supports the faster PCI-E 4.0 4x). However, anyway, the connection connector usually allows you to realize all the features of the installed drive; so this item allows you to quite reliably evaluate the capabilities of the standard M.2 module.

As for specific interfaces, nowadays you can mainly find the following options:

— SATA 3. The SATA interface was originally designed for traditional hard drives. The third version of this interface is the latest; it provides data transfer rates up to 600 Mbps. This is significantly less than PCI-E, and in general, very little by the standards of SSD drives. Therefore, M.2 connection using SATA is typical mainly for low-cost entry-level modules. However, even these media are generally faster than most HDDs.

— PCI-E. Universal interface for connecting internal peripherals. Provides generally faster speeds than SATA, making it better suited for SSD modules: theoretically, PC...I-E allows you to realize the full potential of SSDs, even the fastest. In fact, the supported data transfer rate may be different — depending on the version of the interface and the number of lines (data transmission channels). Here are the options most relevant for modern laptops:
  • PCI-E 3.0 2x. Connection using 2 lanes PCI-E version 3.0. This version provides speeds of about 1 GB/s per line; respectively, two lines give a maximum of just under 2 GB / s.
  • PCI-E 3.0 4x. Connection using 4 lanes PCI-E version 3.0. Provides a maximum speed of about 4 GB / s.
  • PCI-E 4.0 4x. Connection using 4 lanes PCI-E version 4.0. In this version, the throughput, compared to PCI-E 3.0, has been doubled — thus, 4 lines give a maximum speed of about 8 MB / s.
Note that in the case of M.2 connectors, different PCI-E variations are usually quite compatible with each other — except that the connection speed when working with a "non-native" connector will be limited by the capabilities of the slowest component. For example, when connecting a PCI-E 3.0 4x SSD module to a PCI-E 3.0 2x slot, this speed will correspond to the capabilities of the connector, and when connected to PCI-E 4.0 4x, to the capabilities of the drive.
Lenovo V15 G4 AMN often compared
Acer Aspire 3 A315-24P often compared