Dark mode
United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison MSI Katana 17 B12VFK [B12VFK-634XPL] vs MSI Pulse 17 B13VFK [B13VFK-072XES]

Add to comparison
MSI Katana 17 B12VFK (B12VFK-634XPL)
MSI Pulse 17 B13VFK (B13VFK-072XES)
MSI Katana 17 B12VFK [B12VFK-634XPL]MSI Pulse 17 B13VFK [B13VFK-072XES]
Outdated Product
from £1,256.49 
Outdated Product
User reviews
0
1
0
0
TOP sellers
Typelaptoplaptop
Screen
Screen size17.3 "17.3 "
Screen typeIPSIPS
Surface treatmentmattematte
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate144 Hz144 Hz
Colour gamut (NTSC)45 %
CPU
SeriesCore i7Core i7
Model12650H13700H
Code nameAlder Lake (12th Gen)Raptor Lake (13th Gen)
Processor cores10 (6P+4E)14 (6P+8E)
Total threads1620
CPU speed1.7 GHz1.8 GHz
TurboBoost / TurboCore frequency4.7 GHz5 GHz
CPU TDP45 W45 W
3DMark0616706 score(s)
Passmark CPU Mark24424 score(s)31198 score(s)
SuperPI 1M7.83 с
RAM
RAM16 GB16 GB
Max. RAM64 GB64 GB
RAM typeDDR5DDR5
RAM speed4800 MHz5200 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 4060RTX 4060
Video memory8 GB8 GB
Memory typeGDDR6GDDR6
GPU TDP105 W
Advanced Optimus
VR
3DMark0649746 points49424 points
3DMark Vantage P90275 points90275 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity1024 GB1024 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 4.0 4x
M.2 drive size22x80 mm22x80 mm
Additional M.2 connector1
Addittional M.2 connectors interfacePCI-E 4.0 4x
Additional M.2 drive size22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 2.1
Card reader
USB 2.01 pc1 pc
USB 3.2 gen122
USB C 3.2 gen11 pc1 pc
Alternate Mode
Monitors connection22
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 6 (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.2v 5.2
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Keyboard
BacklightRGB 4 zoneRGB 4 zone
Lighthing syncMSI Mystic Light Sync
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity54 W*h90 W*h
Powered by USB-C (Power Delivery)
Fast charge
Power supply Included200 W240 W
General
Preinstalled OSno OSno OS
Materialmatte plasticaluminium / plastic
Dimensions (WxDxT)398x273x25 mm398x273x27 mm
Weight2.6 kg2.7 kg
Color
Added to E-Catalogjuly 2023may 2023

Colour gamut (NTSC)

The colour gamut of the laptop matrix according to the NTSC colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

Specifically, NTSC is one of the first colour models created back in 1953 for colour television. It is not used in the production of modern LCD matrices, but is used to describe and compare them. NTSC covers a wider range of colours than sRGB, which is standard in computer technology; therefore, even a small number of percentages in this case corresponds to a fairly wide coverage. For example, a value of 72% or more in NTSC is already considered a good value for use in design and graphics. At the same time, the same NTSC figures on different screens may correspond to different sRGB figures; so if accurate colour reproduction is decisive for you, these details should be clarified before buying.

Also note that among individual monitors, it is easier to find a screen with a wide colour gamut; while it will also cost less than a laptop with similar display characteristics. So choosing a laptop with a h...igh-end screen makes sense mainly when portability is as important to you as high-quality colour reproduction.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Code name

The code name for CPU installed in the laptop.

This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters - general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.

Nowadays, the following code names are relevant in Intel processors: Coffee Lake, Comet Lake, Ice Lake, Tiger Lake, Jasper Lake, Alder Lake, Raptor Lake (13th Gen), Alder Lake-N, Raptor Lake (14th Gen), Meteor Lake (Series 1), Raptor Lake (Series 1), Lunar Lake (Series 2). For AMD, the list looks like this: Zen 2 Renoir, Zen 2 Lucienne, Zen 3 Cezanne, Zen 3 Barcelo, Zen 3+ Rembrandt, Zen 3+ Rembrandt R, Zen 2 Mendocino, Zen 3 Barcelo R, Zen 4 Dragon Range, Zen 4 Phoenix Zen 4 Hawk Point, Zen 5 Strix Point. Detailed data on different code names can be found in special sources.

Processor cores

The number of cores in the laptop CPU.

The core is a part of the CPU designed to process one thread of instructions (and sometimes more, for such models, see "Number of threads"). Nowadays, in laptops you can find dual-core, quad-core, six-core, eight-core, ten-core, 12-core, 14-core CPUs. Also note that recently configurations with different types of cores as part of a single CPU are gaining popularity. Such chips are built on a hybrid architecture that combines high performance and energy-efficient cores. They operate at different clock speeds, have different amounts of pre-installed cache memory and are designed to solve different problems. In particular, such CPUs are found in Intel CPUs (from the 12th generation) and Apple.

Theoretically, more cores means higher performance, especially in parallel computing tasks or when processing multiple resource-intensive tasks at the same time. However, in practice this is true only all else being equal – that is, with a similar microarchitecture, clock frequency, cache volumes and other key parameters. Modern CPUs can vary greatly on these parameters – in itself, a greater number of cores does not mean superiority. This is especially true for dual- and quad-core chips: a mobil...e-level CPU (for example, Snapdragon, see "CPU series") with 4 cores may well be inferior in capabilities to a dual-core desktop series chip (like Core i3 or i5, which are often used in universal laptops with the "optimal" set of specifications for different tasks). When evaluating CPUs with two or four cores, it is necessary to look, first of all, at the general set of characteristics. But the presence of six, eight or more cores is almost certainly a sign of a powerful CPU. Such equipment is typical mainly for advanced gaming and professional laptops.

Total threads

The number of threads supported by the laptop processor.

A thread is a sequence of instructions executed by a processor. Initially, each processor core was designed for one such sequence, and the number of threads was equal to the number of cores. However, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two instruction sequences at once. Such technologies have different names for different manufacturers, but the principle of their operation is the same: during the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with a different sequence. Accordingly, the total number of threads in such processors is twice the number of cores; such a scheme of work significantly increases productivity (although, of course, it also affects the cost).

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

TurboBoost / TurboCore frequency

Processor clock speed achieved in TurboBoost or TurboCore "overclocking" mode.

Turbo Boost and Turbo Core technologies are used by different manufacturers (Intel and AMD, respectively), but they have the same principle of operation: load distribution from more loaded processor cores to less loaded ones to improve performance. The "overclocking" mode is characterized by an increased clock frequency, and it is indicated in this case.

For more information about clock speed in general, see the relevant paragraph above.

3DMark06

The result shown by the laptop processor in 3DMark06.

This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for gaming laptops.

Passmark CPU Mark

The result shown by the laptop processor in the Passmark CPU Mark test.

Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).
MSI Katana 17 B12VFK often compared