United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo Legion Slim 5 16APH8 [5 16APH8 82Y90082RA] vs Acer Nitro 16 AN16-41 [AN16-41-R7FA]

Add to comparison
Lenovo Legion Slim 5 16APH8 (5 16APH8 82Y90082RA)
Acer Nitro 16 AN16-41 (AN16-41-R7FA)
Lenovo Legion Slim 5 16APH8 [5 16APH8 82Y90082RA]Acer Nitro 16 AN16-41 [AN16-41-R7FA]
Expecting restockOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size16 "16 "
Screen typeIPSIPS
Surface treatmentanti-glarematte
Screen resolution2560x1600 (16:10)2560x1600 (16:10)
Response time3 ms
Refresh rate165 Hz165 Hz
Brightness300 nit500 nit
Contrast1200 :11330 :1
Colour gamut (sRGB)100 %100 %
Colour gamut (Adobe RGB)70 %
Colour gamut (DCI P3)68 %
TÜV Rheinland certificate
HDRHDR10, Dolby Vision
AMD compatibilityAMD FreeSync
NVIDIA G-Sync
CPU
SeriesRyzen 7Ryzen 7
Model7840HS7735HS
Code namePhoenix (Zen 4)Rembrandt R (Zen 3+)
Processor cores88
Total threads16 threads16 threads
CPU speed3.8 GHz3.2 GHz
TurboBoost / TurboCore frequency5.1 GHz4.75 GHz
CPU TDP54 W35 W
3DMark0615623 score(s)13391 score(s)
Passmark CPU Mark29165 score(s)24319 score(s)
SuperPI 1M7.8 sec
RAM
RAM16 GB16 GB
Max. RAM32 GB32 GB
RAM typeDDR5DDR5
RAM speed5600 MHz5600 MHz
Slots22
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 4070RTX 4070
Video memory8 GB8 GB
Memory typeGDDR6GDDR6
GPU TDP140 W140 W
Advanced Optimus
VR
3DMark0655615 score(s)55615 score(s)
3DMark Vantage P97153 score(s)100062 score(s)
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB512 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 4.0 4x
M.2 drive size22x80 mm22x80 mm
Additional M.2 connector11
Addittional M.2 connectors interfacePCI-E 4.0 4xPCI-E 4.0 4x
Additional M.2 drive size22x80 mm22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 2.1
Card reader
 /SD/MMC/
 /microSD/
USB 2.01 pc
USB 3.2 gen222
USB C 3.2 gen222
Alternate Mode
Monitors connection33
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
Bluetoothv 5.1v 5.1
Multimedia
Webcam1920x1080 (Full HD)1280x720 (HD)
Camera shutter
Speakers22
Audio decodersDTS X Ultra
Security
 
TPM
kensington / Noble lock
TPM
Keyboard
BacklightwhiteRGB 4 zone
Key designisland typeisland type
Num block
Additional keys4
Input devicetouchpadtouchpad
Battery
Battery capacity5182 mAh5850 mAh
Battery capacity80 W*h90 W*h
Battery voltage15.44 V15.4 V
Operating time9.7 h10 h
Powered by USB-C (Power Delivery)
Fast charge
Charging time50% in 30 min
Power supply Included230 W330 W
General
Preinstalled OSno OSWindows 11 Home
Materialaluminium / plasticmatte plastic
Dimensions (WxDxT)360x260x25 mm360x280x28 mm
Weight2.4 kg2.7 kg
Color
Added to E-Catalogoctober 2023september 2023

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Response time

Screen response time to a control signal — in other words, the time between the receipt of such a signal on the matrix and the switching of pixels to a given mode.

Theoretically, the lower the response time, the better the screen handles with dynamic scenes, the higher the frame rate on it can be achieved. At the same time, it is worth noting that almost all modern matrices have sufficient response speed to effectively process the classic frame rate of 60 Hz — and, recall, it is quite enough for most cases. So paying attention to this parameter makes sense, first of all, if you are purchasing an advanced gaming model, the screen of which operates at a frame rate of more than 60 Hz. In other cases, the response time is often not indicated at all.

Brightness

The maximum brightness that a laptop screen can provide.

The brighter the ambient light, the brighter the laptop screen should be, otherwise the image on it may be difficult to read. And vice versa: in dim ambient light, high brightness is unnecessary — it greatly burdens the eyes (however, in this case, modern laptops provide brightness control). Thus, the higher this indicator, the more versatile the screen is, the wider the range of conditions in which it can be effectively used. The downside of these benefits is an increase in price and energy consumption.

As for specific values, many modern laptops have a brightness of 250 – 300 cd / m2 and even lower. This is quite enough for working under artificial lighting of medium intensity, but in bright natural light, visibility may already be a problem. For use in sunny weather (especially outdoors), it is desirable to have a brightness margin of at least 300 – 350 cd / m2. And in the most advanced models, this parameter can be 350 – 400 cd / m2 and even more.

Contrast

The contrast of the screen installed in the laptop.

Contrast is the largest difference in brightness between the lightest white and darkest black that can be achieved on a single screen. It is written as a fraction, for example, 560:1; while the larger the first number, the higher the contrast, the more advanced the screen is and the better the image quality can be achieved on it. This is especially noticeable with large differences in brightness within a single frame: with low contrast, individual details located in the darkest or brightest parts of the picture may be lost, increasing the contrast allows you to eliminate this phenomenon to a certain extent. The flip side of these benefits is an increase in cost.

Separately, we emphasize that in this case only static contrast is indicated — the difference provided within one frame in normal operation, at constant brightness and without the use of special technologies. For advertising purposes, some manufacturers may also provide data on the so-called dynamic contrast — it can be measured in very impressive numbers (seven-digit or more). However, you should focus primarily on static contrast — this is the basic characteristic of any display.

As for specific values, even in the most advanced screens, this indicator does not exceed 2000: 1. But in general, modern laptops have a rather low contrast ratio — it is assumed that for tasks that require more advanced image characteristics, it is more...reasonable to use an external screen (monitor or TV).

Colour gamut (Adobe RGB)

The colour gamut of the laptop matrix according to the Adobe RGB colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

The Adobe RGB colour model was originally developed for print applications; the range of colours covered by it corresponds to the capabilities of professional printing equipment. Therefore, theoretically, the extensive coverage of this model will be useful to those involved in the design and layout of high-end printed products. However most laptop screens have very limited Adobe RGB values, rarely exceeding 74%; however, you can also find high-end models where this figure approaches 100%. Of course, the cost of such laptops will also be appropriate; therefore, it makes sense to pay attention to them, first of all, when the ability to work with colour “on the go” is of key importance. If this is to be done in one place, it may be more justified to buy a separate monitor with a wide colour gamut (especially since a monitor with such characteristics is easier to find than a laptop).

Colour gamut (DCI P3)

The colour gamut of the laptop matrix according to the DCI P3 colour model.

Colour gamut describes the range of colours that can be displayed on the screen. It is indicated as a percentage, but not relative to the entire variety of visible colours, but relative to the conditional colour space (colour model). This is due to the fact that no modern screen is able to display all the colours visible to humans. However, the larger the colour gamut, the wider the screen's capabilities, the better its colour reproduction.

DCI P3 is an advanced colour model primarily used in digital cinemas. It is noticeably more extensive than the standard sRGB, which gives better and more accurate colours. At the same time, in fact, such a model is used mainly for professional film production and other tasks of a similar level; and laptops for such tasks are used quite rarely (although this is also possible). Therefore, coverage according to DCI P3 is very rarely indicated for modern laptops. However it is quite possible to find models on the market with indicators of such coverage at the level of 98% or more, but there are very few of them, and they cost accordingly. So in many cases a more reasonable (and economical) alternative is a separate monitor with good colour gamut; it makes sense to look for a laptop with similar characteristics if the ability to work with colour “on the go”, without being tied to a specific workplace, is fundamen...tally important to you.

TÜV Rheinland certificate

Laptop display certification for safe blue light emission levels and panel flicker rates. The presence of a TÜV Rheinland certificate confirms that the screen is comfortable for the eyes.

TÜV Rheinland is a large international concern headquartered in Cologne, Germany, providing a wide range of audit services. The company's specialists have developed and approved a number of tests for the compliance of the screens of mobile devices, monitors and TVs with the required level of eye protection from the harmful effects of display radiation on the user's vision on the other side of the screen. The authoritative opinion of TÜV Rheinland is respected in the tech community. Certificates from this body are issued to successfully tested electronics for the implementation of blue light filtering and screen flicker suppression technologies.

HDR

HDR technology format supported by the laptop.

This technology is designed to expand the range of brightness reproduced by the laptop screen; Simply put, an HDR screen will display brighter whites and darker blacks than a regular matrix. In fact, this can significantly improve image quality. First, the expansion of the dynamic range contributes to the brightness and fidelity of colours on the screen; secondly, the visibility of individual details in very bright or very dark areas of the frame is preserved (whereas on a normal screen such details often “sink” in solid white or black).

Note that in order to fully use this function, you need not only a laptop with HDR, but also the corresponding content (video files recorded in HDR, games where this technology is implemented, etc.). In addition, the laptop must support the HDR format used by the content being played. Nowadays, you can find such options:

— HDR10. Historically the first of the consumer HDR formats, less advanced than those described below, but extremely widespread. In particular, HDR10 is supported by almost all streaming services that provide HDR content at all, and it is also common for Blu-ray discs. Allows you to work with a colour depth of 10 bits (hence the name). At the same time, devices of this format are also compatible with content in HDR10 +, although its quality will be limited by the capabilities of the original HDR10.

...— HDR10+. An improved version of HDR10. With the same colour depth (10 bits), it uses the so-called dynamic metadata, which allows transmitting information about the colour depth not only for groups of several frames, but also for individual frames. This results in an additional improvement in colour reproduction.

Dolby Vision. An advanced standard used particularly in professional cinematography. Allows you to achieve a colour depth of 12 bits, uses the dynamic metadata described above, and also makes it possible to transmit two image options at once in one video stream — HDR and normal (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in laptops it is almost guaranteed to be combined with at least HDR10, and even with HDR10 +.

AMD compatibility

Laptop support for AMD FreeSync technology.

This feature is only found on models equipped with discrete AMD graphics cards. It is used to match the frame rate of the screen and the frame rate of the signal arriving at it — so that these frequencies match. This avoids flickering, twitching, and other image artifacts that can occur due to out-of-sync. This feature is especially useful for games where the frame rate of the video signal can "float" depending on the load on the graphics core; in fact, most laptops with FreeSync are specifically for gaming.

NVIDIA graphics cards use a similar technology called G-Sync.
Acer Nitro 16 AN16-41 often compared