United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison HP Pavilion 15-eh3000 [15-EH3047NR 7F1Z3UA] vs HP 15-fc0000 [15-FC0077NS 7Z1L8EA]

Add to comparison
HP Pavilion 15-eh3000 (15-EH3047NR 7F1Z3UA)
HP 15-fc0000 (15-FC0077NS 7Z1L8EA)
HP Pavilion 15-eh3000 [15-EH3047NR 7F1Z3UA]HP 15-fc0000 [15-FC0077NS 7Z1L8EA]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size15.6 "15.6 "
Screen typeIPSIPS
Surface treatmentglossanti-glare
Screen resolution1920x1080 (16:9)1920x1080 (16:9)
Refresh rate60 Hz60 Hz
Brightness250 nt250 nt
Colour gamut (NTSC)45 %45 %
CPU
SeriesRyzen 7Ryzen 7
Model7730U7730U
Code nameBarcelo R (Zen 3)Barcelo R (Zen 3)
Processor cores88
Total threads1616
CPU speed2 GHz2 GHz
TurboBoost / TurboCore frequency4.5 GHz4.5 GHz
CPU TDP15 W15 W
Passmark CPU Mark19401 score(s)19401 score(s)
SuperPI 1M7.95 с7.95 с
RAM
RAM16 GB16 GB
Max. RAM16 GB16 GB
RAM typeDDR4DDR4
RAM speed3200 MHz3200 MHz
Slots22
Graphics card
Graphics card typeintegratedintegrated
Graphics card seriesAMD RadeonAMD Radeon
Graphics card modelVega 8Vega 8
3DMark0625886 points25886 points
3DMark Vantage P21716 points21716 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity512 GB512 GB
M.2 drive interfacePCI-E 3.0PCI-E 3.0
M.2 drive size22x80 mm22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 1.4b
Card reader
 /microSD/
USB 3.2 gen122
USB C 3.2 gen11 pc
USB C 3.2 gen21 pc
Alternate Mode
Monitors connection21
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6 (802.11ax)
Bluetoothv 5.3v 5.3
Multimedia
Webcam1280x720 (HD)1280x720 (HD)
Camera shutter
Speakers22
Brand acousticsBang & Olufsen
Security
kensington / Noble lock
 
Keyboard
Backlightwhiteis absent
Key designisland typeisland type
Num block
Input devicetouchpadtouchpad
Battery
Battery capacity41 W*h41 W*h
Operating time8.5 h10.5 h
Powered by USB-C (Power Delivery)
Fast charge
Charging time50% in 45 min50% in 45 min
Power supply Included45 W45 W
General
Preinstalled OSWindows 11 HomeWindows 11 Home
Materialaluminium / plasticmatte plastic
Dimensions (WxDxT)360x234x18 mm360x236x19 mm
Weight1.75 kg1.59 kg
Color
Added to E-Catalogdecember 2023november 2023

Surface treatment

Glossy. A glossy surface improves the overall picture quality: other things being equal, the picture on such a screen looks brighter and more colorful than on a matte one. On the other hand, pollution is very noticeable on such a surface, and in bright external lighting, a lot of glare appears on it, which can greatly interfere with viewing. Therefore, instead of the classic gloss, laptops are increasingly using an anti-reflective version of such a coating (see below). Nevertheless, this option still does not lose popularity: it is somewhat cheaper than the “anti-glare”, and in soft, relatively dim lighting, it can even provide a more pleasing image to the eye.

Matte. Matte finish is inexpensive and does not form glare even from fairly bright lighting. On the other hand, the picture on such a screen is noticeably dimmer than on a similar glossy display. However, this moment can be compensated by various design solutions (primarily a good margin of brightness); so this option can be found in all categories of modern laptops — from low-cost models for working with documents to top gaming configurations.

Glossy (anti-glare). A variation on the glossy finish described above, designed to reduce glare from external light sources. Such screens really glare noticeably less than traditional glossy ones (or even do not give glare at all); at the same time, in...terms of image quality, they are at least superior to matte ones. So it is this type of coating that is most popular nowadays.

Connection ports

Connection connectors provided in the design of the laptop.

This paragraph mainly indicates data on video outputs: VGA, HDMI(versions 1.4, 2.0, 2.1 and their varieties), miniHDMI / microHDMI, DisplayPort, miniDisplayPort). In addition, the presence of other types of connectors can be specified here: audio S / P-DIF, service COM port. But information about interfaces such as full-sized USB, USB-C, Thunderbolt and LAN is provided in separate paragraphs (see below).

— VGA. Analogue video output, also known as D-Sub 15 pin. Technically considered obsolete: it has low noise immunity, does not provide sound transmission, and the maximum supported resolution in fact does not exceed 1280x1024. However, VGA inputs are still quite common in monitors today, and are also found in other types of video equipment — in particular, projectors. Therefore, some modern laptops, mainly for multimedia purposes, are equipped with similar outputs — counting on connection to the mentioned video devices.

— HDMI. The most popular modern interface for working with HD content. Uses digital data transmission, allows you to transmit high-def...inition video and multi-channel audio over one cable at the same time. Most modern monitors, TVs, projectors, and other HD-enabled video equipment have at least one HDMI input; so outputs of this type are extremely common in modern laptops.

— microHDMI and miniHDMI. Reduced varieties of the HDMI described above: they are completely similar in functionality and differ only in the size of the connector. They are installed mainly in the thinnest and most compact laptops, for which full-size HDMI is too cumbersome.

The HDMI and mini/microHDMI ports on modern laptops may correspond to different versions:
  • v 1.4. The earliest of the commonly used standards, released in 2009. Allows you to transmit a signal in resolutions up to 4096x2160 at a frame rate of 24 fps, and with Full HD resolution, the frame rate can reach 120 fps; 3D video transmission is also possible.
  • v 1.4a. The first addition to version 1.4, in which, in particular, two additional 3D video formats were added.
  • v 1.4b. The second update of the HDMI 1.4 standard, which introduced only minor clarifications and additions to the v 1.4a specifications.
  • v2.0. Global HDMI update introduced in 2013. Also known as HDMI UHD, it allows you to stream 4K video at frame rates up to 60 fps. The number of audio channels can reach 32, and up to 4 audio streams can be broadcast simultaneously. In addition, support for the 21:9 aspect ratio and some improvements regarding 3D content have been introduced.
  • v2.0a. First HDMI 2.0 update. A key innovation was compatibility with HDR content (see "HDR support").
  • v2.0b. Second update of version 2.0. Key innovations have affected mainly work with HDR — in particular, support for HDR10 and HLG has been added.
  • v2.1. One of the newest versions, released in the fall of 2017. Further increases in bandwidth have made it possible to support 4K and even 8K video at frame rates up to 120 fps. In addition, key improvements include enhanced HDR capabilities. Note that to use the full capabilities of HDMI v2.1, HDMI Ultra High Speed cables are required, although basic functions are available with regular cables.
Display port. Digital high-speed port, allows you to transfer both video and audio in HD quality. It is similar in many respects to HDMI, provides a higher data transfer rate and allows the use of longer cables, but is less common, mainly used in computer technology.

miniDisplayPort. A smaller version of the DisplayPort described above, designed to make the connector more compact; except for the dimensions, it is no different from the original interface. Some time ago it was a regular video connector for Apple laptops; and even the Thunderbolt interface that replaced it, in versions 1 and 2 (see below), uses a connector identical to the miniDisplayPort connector.

Both full-size DisplayPort and its smaller version may be different versions. Here are the most popular options today:
  • v 1.2. The earliest version common in laptops, released in 2010. Among the most important innovations presented in this version are 3D support, the ability to work simultaneously with several video streams for serial connection of screens (daisy chain), as well as the ability to work through the miniDisplayPort connector. Bandwidth v 1.2 is enough to fully support 5K video at 30 frames per second and 8K video — with certain limitations.
  • v 1.2a. Update version 1.2, released in 2013. One of the most noticeable innovations is the ability to work with AMD FreeSync (see above). Bandwidth and supported resolutions remain unchanged.
  • v 1.3. DisplayPort version released in 2014. Compared to the previous version, the throughput has been increased by 1.5 times for 1 line and almost 2 times for the whole connector (8.1 Gbps and 32.4 Gbps, respectively). This, among other things, made it possible to provide full support for 8K video at 30 fps, as well as increase the maximum frame rate in 4K and 5K standards to 120 and 60 fps, respectively. In daisy chain mode, this standard makes it possible to work with two 4K UHD (3840x2160) screens at a frame rate of 60 Hz, or with four 2560x1600 screens at the same frequency. In addition, Dual-mode support was introduced in this version, providing compatibility with HDMI and DVI interfaces through the simplest passive adapters.
  • v 1.4. Version introduced in March 2016. Bandwidth, compared to the previous standard, remained unchanged, but some important features were added — in particular, support for Display Stream Compression 1.2 compression, HDR10 standard and Rec. 2020, and the maximum number of supported audio channels has increased to 32.
  • v 1.4a. An update released in 2018 "quietly" — without even an official press release. The main innovation was the update of Display Stream Compression technology from version 1.2 to version 1.2a.


S/P-DIF. Output for digital audio transmission, including multi-channel. It has two varieties — optical and electrical; the first is absolutely insensitive to interference, but uses rather delicate cables, the second does not require special care in handling, but can be subject to pickups (although the wires are usually made shielded). Laptops use mainly optical S/P-DIF, while for compactness this connector is combined with a mini-Jack jack for connecting headphones. However, anyway, it's ok to clarify the specific features of this interface separately.

— COM port. Universal interface for connecting various external devices — in particular, dial-up modems — as well as for direct connection between two computers. Also known as RS-232 (after the connector). Nowadays it is considered obsolete due to the spread of more compact, faster and more functional interfaces, primarily USB. However, many types of equipment, including specialized ones, use the COM port as a control interface. Such equipment includes uninterruptibles, satellite receivers and communication devices, security and alarm systems, etc. Thus, COM ports, although almost never used in consumer-level laptops, are still found in some specialized models.

Card reader

A device for working with removable memory cards. Usually, it looks like a characteristic slot right on the laptop case, into which the media is inserted. There are different standards for memory cards, a list of compatible standards is indicated in the note to this item. It is worth noting here that for modern laptops it is almost mandatory to support the SD format and its modifications — SD HC, often also SD XC; other options may also be envisaged, but they have not received such distribution. Anyway, this feature is convenient because memory cards are widely used in other types of electronics: for example, SD is the generally accepted standard in digital cameras, and microSD (compatible with SD slots through simple adapters) is used in smartphones. Accordingly, the presence of a card reader greatly facilitates the exchange of data between a laptop and external devices.

USB C 3.2 gen1

The number of USB-C 3.2 gen1 ports provided in the laptop (these connectors were previously labeled USB-C 3.1 gen1 and USB-C 3.0).

USB-C is a relatively new universal connector designed for use in desktop and laptop computers and other devices. It is slightly larger than microUSB, has a convenient double-sided design (it doesn’t matter which side you connect the plug), and also allows you to implement increased power supply and a number of special functions. In addition, the same connector is standardly used in the Thunderbolt interface versions v3 and v4, and technically it can be used for other interfaces; so in some laptops USB-C has a combined purpose — see "Alternate Mode" for more details. And in some models (mostly the most compact ones), USB-C can also charge the device’s own battery.

Specifically, USB-C version 3.2 gen1 allows connection speeds up to 5 Gbps. As for the number of such ports, it is most often small — usually 1 – 2. This is due to the fact that peripherals for USB-C are produced noticeably less than for full-sized USBs. However, in some configurations, the number of connectors of this type can reach 4.

USB C 3.2 gen2

The number of USB C 3.2 gen2 ports provided in the laptop (previously, such connectors were labeled USB C 3.1 gen2 and USB C 3.1).

USB C is universal connector created relatively recently and designed for use in desktop and laptop computers. It is slightly larger than microUSB, has convenient double-sided design (no matter which side the plug is connected to), and also allows for increased power supply and number of special functions. In addition, the same connector is standardly used in the Thunderbolt v3 interface, and technically can be used for other interfaces; so in some laptops USB C has combined purpose - see “Alternate Mode” for more details. And in some laptops (mostly the most compact ones), USB C can also charge the device’s own battery.

Specifically, the USB C 3.2 gen2 version allows for connection speeds of up to 10 Gbps. As for the number of such ports, it is most often small - usually 1 - 2. This is due to the fact that significantly fewer peripherals for USB C are produced than for full-size USB. However, in some configurations the number of connectors of this type can reach 4.

Alternate Mode

The presence in the laptop of at least one USB-C connector with support for Alternate Mode.

In accordance with the name, Alternate Mode is an alternative mode of operation of the Type C connector, when not USB, but other connection interfaces are implemented through it. The specific set of such interfaces may be different, it should be specified for each model separately. The most typical example is Thunderbolt v3 (see above), such a connection, by definition, works through a USB-C hardware connector. The Thunderbolt specification also includes DisplayPort support, but this video output can be implemented via USB-C and independently, without Thunderbolt functionality. Also, the list of the most popular Alternate Mode options includes HDMI — both in its classic form and in the "mobile" version of MHL (the latter, however, is more typical for smartphones and other handheld equipment than for laptops).

Monitors connection

The maximum number of monitors that can be connected to a laptop at the same time and shared.

Simultaneous connection of several screens allows you to expand the visual space available to the user. For example, it can be useful for designers and layout designers when working with large-format materials, for programmers to separate tasks (one monitor for writing code, the second for searching for the necessary information and other auxiliary purposes), and for gamers-enthusiasts — to ensure the maximum immersion effect.

Wi-Fi

Wi-Fi standards supported by the laptop.

In modern laptops, most often there are wireless communication modules that support Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax), Wi-Fi 6E (802.11ax), Wi-Fi 7 (802.11be). Earlier standards appear infrequently; First of all, this is Wi-Fi 4 (802.11n), which ensures compatibility of the laptop with legacy wireless equipment. Here are the features of each of these standards:

- Wi-Fi 5 (802.11ac). Standard introduced in 2013. It operates exclusively on the 5 GHz frequency, which is why it is only compatible with Wi-Fi 4 and newer versions. Provides a theoretical maximum speed of up to 1 Gbps with a single-channel connection and up to 6 Gbps with multiple channels in MIMO format, while consuming significantly less power than its predecessor.

- Wi-Fi 6 (802.11ax). A standard developed as a direct development and improvement of Wi-Fi 5. A priori, it operates at standard frequencies of 2.4 GHz and 5 GHz (including equipment of earlier standards), but if necessary, it can connect additional bands in the range from 1 to 7 GHz. The maximum data transfer speed has increased to 10 Gbps, but the main advantage of Wi-Fi 6 is not even this, but the further optimization of the simultaneous operation of several devices on the same channel. Wi-Fi 6 provides a minimal drop in speed under conditions...of high channel load.

- Wi-Fi 6E (802.11ax). The Wi-Fi 6E standard is technically called 802.11ax. But unlike basic Wi-Fi 6, which is named similarly, it provides for operation in an additional unused 6 GHz band. In total, the standard uses 14 different frequency bands, offering high throughput in the most crowded places with many active connections. And it's backwards compatible with previous versions of Wi-Fi.

— Wi-Fi 7 (802.11be). The technology, like the previous Wi-Fi 6E, is capable of operating in three frequency ranges: 2.4 GHz, 5 GHz and 6 GHz. At the same time, the maximum bandwidth in Wi-Fi 7 was increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit. The IEEE 802.11be standard uses 4096-QAM modulation, which also allows more symbols to be accommodated in a data transmission unit. From Wi-Fi 7 you can squeeze out a maximum theoretical information exchange speed of up to 46 Gbps. In the context of using wireless connections for streaming and video games, the implemented MLO (Multi-Link Operation) development seems very interesting. With its help, you can aggregate several channels in different ranges, which significantly reduces delays in data transmission and ensures low and stable ping. And Multi-RU (Multiple Resource Unit) technology is designed to minimize communication delays when there are many connected client devices.

Camera shutter

Movable shutter, with which you can cover the webcam lens. Such a device provides additional security: even if an attacker gains access to a laptop and tries to follow the user through a webcam, a closed lens will not allow him to see anything. In addition, the shutter protects the optics from various contaminants.

Note that relatively recently an alternative option has appeared — a switch on the laptop case, with which you can turn off the camera's power at the hardware level. Such a switch in our catalog is also referred to as a “camera shutter”, since its purpose and capabilities are completely similar.
HP Pavilion 15-eh3000 often compared