United Kingdom
Catalog   /   Computing   /   Components   /   Computer Cooling

Comparison ID-COOLING SE-903-SD vs Enermax ETS-N31-02

Add to comparison
ID-COOLING SE-903-SD
Enermax ETS-N31-02
ID-COOLING SE-903-SDEnermax ETS-N31-02
Outdated ProductCompare prices 1
TOP sellers
Main
Heat sink 130W. Low height. Direct contact of heat pipes. Attachment-clothespin.
Main specs
Featuresfor CPUfor CPU
Product typeair coolerair cooler
Air flow directionsideways (dispersion)sideways (dispersion)
Max. TDP130 W130 W
Fan
Number of fans11
Fan size
92 mm /92x92x25/
92 mm
Bearinghydrodynamicmagnetic centring
Min. RPM800 rpm
Max. RPM2000 rpm2000 rpm
Speed controllerauto (PWM)auto (PWM)
Max. air flow37.44 CFM32.8 CFM
Static pressure1.88 mm H2O2.15 mm H2O
replaceable
Noise level23 dB25 dB
Power source3-pin4-pin
Radiator
Heat pipes33
Heatpipe contactstraightstraight
Heatsink materialaluminium / copperaluminium / copper
Plate materialaluminiumaluminium
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
 
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 1151 / 1151 v2
Intel 1200
General
Mount typelatcheslatches
Dimensions104x75x123 mm95x78x125 mm
Height123 mm125 mm
Weight370 g385 g
Added to E-Catalogjanuary 2022february 2018

Bearing

The type of bearing used in the cooling fan(s).

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is rather low — rolling, and even more so the hydrodynamic and magnetic principle of operation (see below), provide much less friction.

Rolling. They are also called "ball bearings", since the "intermediaries" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices (see below). Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

Hydrodynamic. Bearings of this type are filled with a special liquid; when rotate...d, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

Min. RPM

The lowest speed at which the cooling fan is capable of operating. Specified only for models with speed control (see below).

The lower the minimum speed (with the same maximum) — the wider the speed control range and the more you can slow down the fan when high performance is not needed (such a slowdown allows you to reduce energy consumption and noise level). On the other hand, an extensive range affects the cost accordingly.

Max. air flow

The maximum airflow that a cooling fan can create; measured in CFM — cubic feet per minute.

The higher the CFM number, the more efficient the fan. On the other hand, high performance requires either a large diameter (which affects the size and cost) or high speed (which increases the noise and vibration levels). Therefore, when choosing, it makes sense not to chase the maximum air flow, but to use special formulas that allow you to calculate the required number of CFM depending on the type and power of the cooled component and other parameters. Such formulas can be found in special sources. As for specific numbers, in the most modest systems, the performance does not exceed 30 CFM, and in the most powerful systems it can be up to 80 CFM and even more.

It is also worth considering that the actual value of the air flow at the highest speed is usually lower than the claimed maximum; see Static Pressure for details.

Static pressure

The maximum static air pressure generated by the fan during operation.

This parameter is measured as follows: if the fan is installed on a blind pipe, from which there is no air outlet, and turned on for blowing, then the pressure reached in the pipe will correspond to the static one. In fact, this parameter determines the overall efficiency of the fan: the higher the static pressure (ceteris paribus), the easier it is for the fan to “push” the required amount of air through a space with high resistance, for example, through narrow slots of a radiator or through a case full of components.

Also, this parameter is used for some specific calculations, however, these calculations are quite complex and, usually, are not necessary for an ordinary user — they are associated with nuances that are relevant mainly for computer enthusiasts. You can read more about this in special sources.

Noise level

The standard noise level generated by the cooling system during operation. Usually, this paragraph indicates the maximum noise during normal operation, without overloads and other "extreme".

Note that the noise level is indicated in decibels, and this is a non-linear value. So it is easiest to evaluate the actual loudness using comparative tables. Here is a table for values found in modern cooling systems:

20 dB — barely audible sound (quiet whisper of a person at a distance of about 1 m, sound background in an open field outside the city in calm weather);
25 dB — very quiet (normal whisper at a distance of 1 m);
30 dB — quiet (wall clock). It is this noise that, according to sanitary standards, is the maximum allowable for constant sound sources at night (from 23.00 to 07.00). This means that if the computer is planned to sit at night, it is desirable that the volume of the cooling system does not exceed this value.
35 dB — conversation in an undertone, sound background in a quiet library;
40 dB — conversation, relatively quiet, but already in full voice. The maximum permissible noise level for residential premises in the daytime, from 7.00 to 23.00, according to sanitary standards. However, even the noisiest cooling systems usually do not reach this indicator, the maximum for such equipment is about 38 – 39 dB.

Power source

Type of power connector for the cooling system. Power is usually output through the motherboard, for this the following connectors are most often used:

3-pin. Three-pin connector; Today it is considered obsolete, but it is still widely used.

4-pin. Plug with 4 pins. Its main advantage is the ability to automatically adjust the rotation speed via PWM (for more details, see "Speed controller").

These two standards are mutually compatible: a 3-pin fan can be connected to a 4-pin connector on the motherboard, and vice versa (unless PWM is available in both cases).

Much less common are options such as 2-pin, installed in some inexpensive fans; 6-pin, used in cooling systems with RGB backlighting, which requires a rather powerful additional power supply; 7-pin and 8-pin, similar in their specifics to a 6-pin connector; as well as power supply via a standard MOLEX plug provided in separate case fans.

Socket

Socket - processor connector - with which the corresponding cooling system is compatible.

Different sockets differ not only in compatibility with a particular CPU, but also in the configuration of the mounting place for the cooling system. So, when purchasing a processor cooling system separately, it is worth making sure that it is compatible with the socket. Nowadays, solutions are mainly produced for the following types of sockets: AMD AM2/AM3/FM1/FM2, AMD AM4, AMD AM5, AMD TR4/TRX4, Intel 775, Intel 1150, Intel 1155/1156, Intel 1366, Intel 2011/2011 v3, Intel 2066, Intel 1151/1151 v2, Intel 1200, Intel 1700.

Dimensions

General dimensions of the cooling system. For water systems (see "Type"), this paragraph indicates the size of the external radiator (the dimensions of the water block in such devices are small, and there is no need to specify them in particular).

In general, this is a fairly obvious parameter. We only note that for case fans (see ibid.), the thickness is of particular importance — it directly depends on how much space the device will take up inside the system unit. At the same time, it is customary to refer to fans with a thin case for models in which this size does not exceed 20 mm.

Height

The cooling system should fit into the computer case without any problems. The vast majority of case manufacturers indicate in the specifications the maximum height of the cooler that can be installed on their chassis. It is from this value that it is necessary to build on when choosing a cooling system. With an oversized cooler, you will have to leave the side wall of the case wide open, which violates the built-in air circulation pattern and provokes dust pollution of the internal space of the system unit.
ID-COOLING SE-903-SD often compared
Enermax ETS-N31-02 often compared