United Kingdom
Catalog   /   Automotive   /   Parts & Car Electronics   /   Car Batteries

Comparison GREENPOWER MAX 6CT-62L vs Forse Original 6CT-65L

Add to comparison
GREENPOWER MAX (6CT-62L)
Forse Original (6CT-65L)
GREENPOWER MAX 6CT-62LForse Original 6CT-65L
Outdated ProductOutdated Product
TOP sellers
Typestarterstarter
Suitable forcarcar
Maintenancemaintainablemaintenance free
StandardDINDIN
Specs
Electrolyte typeSLA (lead acid)SLA (lead acid)
TerminalsT1 (cone)T1 (cone)
Terminal placementshort sidelong side
Polarity+ left+ left
Voltage12 V12 V
Battery capacity62 Ah65 Ah
Starting power (EN)600 А630 А
General
Carrying handle
Dimensions (LxWxH)242x175x190 mm242x175x190 mm
Weight16.5 kg
Added to E-Catalogjanuary 2019october 2017

Maintenance

Maintainable. Only classic lead-acid batteries (see "Type") can be serviced: they are easy to distinguish even externally — by the presence of removable plugs that provide access to internal containers with electrolyte. The latter is a mixture of sulfuric acid with water, and with each charge, some of this water "boils away" (decomposes into oxygen and hydrogen and evaporates). This happens especially intensively during overcharging or charging at high voltage. Battery maintenance consists of periodically replenishing the water reserves in the electrolyte — without this, a decrease in its level leads to damage to the plates due to contact with air, which irreparably worsens the battery's characteristics. On average, maintenance should be carried out 1-2 times a year (15-20 thousand km of mileage for a passenger car) and these periods usually coincide with the terms of scheduled maintenance. However, this value may vary depending on the characteristics of both the battery itself and its operation; More detailed information is usually contained in the instructions for specific models. "Refilling" should be done exclusively with distilled water, since even a relatively small amount of foreign impurities can damage the plates.

Maintenance free. As the name suggests, such batteries do not require the maintenance described above; this is achieved in a number of ways, in particular by filling the elect...rolyte with a reserve for the entire service life or using gel (see "Type"). With obvious advantages due to ease of use, maintenance-free batteries at the same time have one drawback: they are much more sensitive to deep discharge (capacity decreases), and, accordingly, tolerate cold and long periods of downtime worse.

Terminal placement

The location of the terminals on the battery may vary depending on its purpose (see above) and some other features. Today, the following options may be encountered:

Long side. The standard arrangement of the terminals is on the top panel of the battery, which is usually a rectangle, along the long side of this rectangle. It is used in all types of batteries ("see "Purpose"), and in batteries for passenger cars it is almost a standard option.

Short side. In this version, the terminals are usually located on the top cover along the short side of the battery, on the side, if you look at it from the front side - hence the name. Almost all models with this arrangement are designed for trucks and buses (see "Purpose").

Diagonally. The terminals are located diagonally across the top cover, i.e. in opposite corners of the rectangle. This type of arrangement is quite rare today, most often found in batteries for heavy equipment (see "Purpose").

Middle. As with the standard arrangement described above, the terminals in this case are located along the long side of the top battery cover. However, they are not located at the edge of the cover, but shifted to the center — hence the name. Such models do not have any fundamental differences from batteries with standard terminals, but for a number of reaso...ns they are relatively rare.

— From the end. In this case, it is implied that the terminals are installed on the front wall of the battery, which is typical for the American form factor (see above). Such terminals can be combined with standard ones on the cover, but even such combined models are still considered to be “end-mounted”.

Battery capacity

The electrical capacity of a battery, in other words, the amount of energy stored by a battery when fully charged. The capacity value is expressed in amp-hours and indicates the number of hours during which a fully charged battery will be discharged to the minimum allowable charge, delivering a current of 1 ampere to the load. For example, a capacity of 40 Ah means that the battery is capable of delivering a current of 1 A for 40 hours, or 2 A for 20 hours, etc. In fact, a more capacious battery gives more attempts to start the engine, and is also able to work longer at a low load (for example, when powering a car audio system).

The capacity requirements for different transport types differ markedly. So, in motorcycle batteries, it rarely exceeds 20 Ah, the average value for passenger cars is 40-80 Ah (but there are options for 100 Ah or more), and for heavy equipment like buses, an acceptable capacity starts somewhere from 100 Ah. The optimal value of the battery capacity is often indicated by the manufacturer in the characteristics of the vehicle, and when choosing a model by capacity, you should focus primarily on these figures.

Starting power (EN)

The starting power of the battery, measured according to the EN standard (the unified standard of the European Union). According to this standard, the starting power is the maximum power that the battery can deliver for 30 seconds at an electrolyte temperature of -18 °C without the voltage dropping below a certain level (for standard 12 V batteries - not lower than 7.2 V). The term "starting" appeared because this operating mode is similar to starting an engine, when the battery has to deliver a high-power power to the starter for a short time.

The recommended starting power value is generally related to the weight category of the vehicle: the heavier it is, the more powerful the power usually needed to start it. And many manufacturers directly indicate the recommended values in the characteristics of a particular vehicle model. If the battery is purchased as a replacement, the general rule is: its starting power should be no less than that of its predecessor.

Note that in practice, starting power designations may be encountered according to 3 more standards: SAE (USA), DIN (Germany) and TU (GOST 959-91). The first is almost identical to EN, and DIN and TU are quite easy to translate into EN and vice versa: they are similar to each other, and each of them gives a number approximately 1.7 times smaller than NE. That is, for example, to replace a 200 A battery according to TU, you should look for a model with a power of at least 340 A (200 * 1.7) according to EN.
Forse Original often compared