Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Panasonic HC-X1000 vs Sony HXR-NX5E

Add to comparison
Panasonic HC-X1000
Sony HXR-NX5E
Panasonic HC-X1000Sony HXR-NX5E
from £2,865.00 
Outdated Product
from $4,335.96 up to $4,719.96
Outdated Product
User reviews
0
0
1
0
0
13
0
TOP sellers
Featuresprofessionalprofessional
Media typeflash (memory card)flash (memory card)
Sensor
Sensor typeCMOSCMOS
Number of sensors3
Sensor size1/2.3"1/3"
Number of megapixels18.911.12
Effective megapixels8.851.04
Camera lens
Focal length (35mm equivalent)29.5 ― 626 mm29.5 — 722 mm
Aperturef/1.8 — f/3.6f/1.8 — f/3.4
Optical zoom20 х20 х
Digital zoom40 х30 х
Image stabilizationoptical / electronicoptical
Filter diameter49 mm72 mm
Manual focus
Video shooting
Video resolution4096x2160 px1920x1080 px
Frame frequency60 fps50 fps
Recording formatsMPEG-4 AVC/H.264
Video recording speedFX 24Mbps, FH 17Mbps, HQ 9Mbps
Minimum illuminance4 lux1.5 lux
Night shooting
Shutter speed1/8 — 1/8000 с1/3 — 1/10000 с
White balance3200K, 5600K, 2400K—9900Kauto, capturing, outdoor, indoor
Auto exposure10
Scene programmestwilight, twilight portrait (photo)
Sound recordingDolby Digital 5.1
Photo
Number of megapixels8.8
Max. photo size4096x2160 px
Picture while shooting
Screen
Screen size3.5 "3.2 "
Screen resolution1152 K pixels921 K pixels
Touch screen
Features
Features
viewfinder
hot shoe
 
Wi-Fi module
NFC
 
detachable microphone
 
viewfinder
hot shoe
built-in speaker
 
 
GPS module
detachable microphone
direct print
Memory and sockets
Memory card supportSDHC, SDXCMS, MS Pro, MS Pro HG, SD, SDHC, SDXC (Class 4 or higher)
Memory card slots2
Connectors
 
USB
HDMI
 
 
AV output
XLR microphone input
headphone jack
component
USB
HDMI
S-Video
SDI
AV output
XLR microphone input
headphone jack
Battery
Battery typeVW-VBD58NP-F570
Battery capacity5800 mAh2200 mAh
Battery life6.25 h
General
Remote control
Dimensions (WxHxD)160x170x315 mm173x193x449 mm
Weight1550 g2200 g
Color
Added to E-Catalogdecember 2014june 2010

Number of sensors

The number of individual light sensors installed in the camera. In our catalog, this parameter is indicated only for models that have more than one sensor.

There are two main varieties of multi-sensor cameras. The first is professional models that carry three sensors on board. Each of them works with only one colour, which allows you to get an image with good clarity and high colour accuracy. Of course, the actual quality of the "picture" largely depends on a number of other parameters, but initially a three-sensor scheme provides better image quality than a single-sensor one.

The second option is 3D camcorders (see "Features"), in which two sensors can be installed — each for its own video channel. See "3D" for more details.

Sensor size

The physical size of the camcorder sensor. It is usually measured diagonally and is indicated in fractions of an inch — for example, 1/3 "or 1/2.33" (the second option is larger, respectively). In addition, sensors of a “photographic” format can be installed in video cameras, in which case the corresponding designation is used — for example, APS-C.

The larger the sensor, the higher the image quality it can provide (all else being equal). This is due to the fact that on larger sensors, each individual pixel is larger, more light falls on it, which increases sensitivity and reduces noise; this is especially important for shooting in low light. For amateur purposes, small sensors are quite enough, but in professional cameras (see "Features") this parameter is at least 1/3". The exception, however, are models with several sensors (see "Number of sensors") in them each individual sensor is quite small, and high quality is ensured by image processing features.

Number of megapixels

The total number of individual photosensitive points (pixels) provided in the design of the sensor (1 megapixel corresponds to a million pixels). This parameter takes into account both those points on which the light falls, and service points that are not directly involved in the construction of the image. Therefore, in modern video cameras, it is more of a reference than practically significant; the actual image quality depends primarily on the number of effective megapixels (see below).

Effective megapixels

The number of light sensitive pixels directly involved in the construction of the image. These are the dots on which the “image” projected by the lens onto the matrix falls. In addition to them, there are also service pixels that are not illuminated during camera operation — they provide auxiliary information necessary for processing the resulting image. Also, when calculating effective megapixels, the reserve area required for electronic stabilization is usually not taken into account (see "Image Stabilization").

The value of the number of effective pixels for different modes of operation of the camcorder will also be different. For example, when recording video, many cameras use multiple pixels to build a single dot on the image; this is due to the fact that the sensor resolutions significantly exceed those required for video shooting (for example, the Full HD standard technically corresponds to only 2.07 megapixels). As a result, the image quality depends more on the sensor size (see above) than on the resolution. And among sensors of the same size, high resolution allows user to get better colour rendering and higher clarity (however, not always — a lot also depends on the peculiarities of image processing). If we are talking about photography, then more megapixels means a higher resolution of the resulting image, but the quality of such a picture can be relatively low due to the increased noise level and low sensitivity of each individual pixel.

Focal length (35mm equivalent)

Focal length of a standard video camera lens in terms of a 35 mm full-frame sensor. This parameter is also called the "equivalent focal length" — EFL.

The focal length itself is the distance from the optical centre of the lens (when focus to infinity) to the sensor, at which the sharpest image is obtained on the sensor. It is one of the key characteristics of any lens, because. determines the viewing angles, the degree of approximation and, accordingly, the specifics of the use of optics. At the same time, it is impossible to compare different options in terms of the actual focal length: the laws of physics are such that with different sizes of sensors, the same focal length will give different viewing angles. Therefore, EFL was adopted as a universal characteristic and criterion for comparison. It can be described as the focal length that a 35mm lens with the same viewing angles would have.

The larger the focal length, the narrower the viewing angle will be and the higher the degree of approximation of the visible scene. Optics with EFL up to 18 mm belongs to the class of ultra wide-angle ("fisheye") and is used primarily to create artistic effects. Distances up to 40 mm correspond to "wide angles", 50 mm gives the same degree of approximation as that of the naked eye, the range of 70-100 mm is considered optimal for portrait shooting, and large values allow the use of optics already as a telephoto lens. Knowing these provisions, one can approximately...evaluate the capabilities of the lens and its suitability for certain tasks; there are more detailed recommendations, they are described in special sources.

Also note that modern video cameras are usually equipped with lenses with a variable focal length (zoom), which allows you to change the degree of approximation and viewing angle; see "Optical Zoom" for details.

Aperture

Aperture of a standard video camera lens.

This parameter describes how much the lens attenuates the light output. Usually it is written as a ratio between the diameter of the active hole and the focal length of the lens, while the first value is taken as one and denoted as f — for example, f/1.8 or f/5.6. Moreover, the smaller the number in such a record, the higher the aperture ratio: for example, in our example, the first option is “lighter” than the second. Also note that most lenses with a variable focal length (see above) also have a variable aperture — in such cases it is indicated by the range from maximum to minimum (from a smaller number to a larger one).

A high aperture ratio is important primarily when shooting in low light conditions: it allows you to capture an image without “lifting up” the sensor sensitivity and without creating additional artifacts in the form of noise, and in the photo shooting mode, you can also work with shorter shutter speeds (which is useful for dynamic scenes). In addition, the higher the aperture, the lower the depth of field and the easier it is to get a blurry background. Note that for simple everyday tasks this parameter does not play a decisive role, but in professional shooting it can be very significant.

Digital zoom

The degree (multiplicity) of zoom provided by the camcorders due to software methods, without changing the focal length of the optics (see "Optical zoom"). The key principle of such an zoom is that part of the image from the sensor is "stretched" to the entire frame. This somewhat worsens the “picture” — after all, not all effective pixels take part in its formation; and the higher the zoom, the worse the quality becomes. On the other hand, this method does not depend on the specifications of the lens and works even with the simplest lenses that do not have zoom lenses, and it is much easier to achieve high magnification than with the optical method.

In modern camcorders, there are two options for using digital zoom. So, among pocket devices (see "Features"), it may be the only available option — not all of them are equipped with zoom lenses. And in full-size models, digital zoom usually complements optical zoom and turns on after the lens reaches the limit of its capabilities.

Note that when shooting 3D (see above), this feature may not be available, and in professional models it is often not used at all.

Image stabilization

An image stabilization method provided in the design of a video camera. The stabilization function itself is designed to compensate for small camera shakes so that they are not noticeable in the image. This is especially true when shooting handheld, and in fact most modern models are designed specifically for such usage. According to the method of work, there are such options:

Optical. A special mechanism with a system of gyroscopes and movable lenses, installed directly in the lens, is responsible for the operation of such stabilization systems. It introduces a correction for all tremors, vibrations, etc., and the “picture” falls on the already stabilized sensor. Optical systems are considered the most advanced and efficient, because. their work allows you to use the entire area of the sensor, fully exploit its capabilities and provide good image quality. Among the shortcomings, it is worth noting the increase in the cost and weight of the cameras, as well as a slight decrease in the reliability of the optics. At the same time, these moments are most often not critical, and stabilizers of this type can be used even in simple and inexpensive models.

— Electronic. Electronic stabilization is carried out due to the fact that not the entire area of the sensor, but only some of it, is involved in the formation of an image for a frame. Simply put, the camera electronics "takes into account" a certain area of the sensor and...transfers the image from it into the frame; and at small displacements, this "area of attention" is also displaced, due to which the visible image remains motionless. The advantages of electronic systems are simplicity of design, lightness, compactness and high reliability; they can be used with even the simplest lenses installed in pocket cameras (see “Features”). Their main disadvantage is the need to reserve a part of the sensor, which reduces the size and resolution of the actually involved area and adversely affects the image quality.

— Optical / electronic. In such systems, both the methods described above are used — both the mechanism in the lens and the reserve on the sensor. This provides extremely high vibration compensation efficiency — the image remains stable even in such conditions in which any single method would be useless. On the other hand, the disadvantages of both options also remain relevant, and the cost of cameras with this feature is quite high.

Filter diameter

The diameter of the mount designed to install an additional filter on a regular camera lens. Such filters can have different types and purposes: UV filtering, colour correction, polarization, artistic effects, etc.; to select them for a specific camera model, you need to know the diameter of the mount.
Panasonic HC-X1000 often compared
Sony HXR-NX5E often compared