Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   PSUs

Comparison Asus Prime Gold Prime 750W Gold vs Gamemax GX Rampage GX-850 Pro WH

Add to comparison
Asus Prime Gold Prime 750W Gold
Gamemax GX Rampage GX-850 Pro WH
Asus Prime Gold Prime 750W GoldGamemax GX Rampage GX-850 Pro WH
Compare prices 3Compare prices 4
TOP sellers
Main
Two sides of the case are painted white and two sides are painted black, allowing you to orient the power supply to suit your preferred build theme.
Power750 W850 W
Form factorATXATX
Specs
PFCactiveactive
Efficiency92 %90 %
Cooling system1 fansemi-passive
Fan size135 mm135 mm
Fan bearingrollinghydrodynamic
Certification80+ Gold80+ Gold
ATX12V version33
Power connectors
MB/CPU power supply24+8+8(4+4) pin24+8+8(4+4) pin
SATA56
MOLEX33
PCI-E 8pin (6+2)34
PCI-E 16pin11
Cable systemmodularmodular
Cable length
MB610 mm650 mm
CPU650 mm650 mm
SATA400 mm500 mm
MOLEX400 mm500 mm
PCI-E675 mm550 mm
Max. power
+3.3V20 А20 А
+5V20 А20 А
+12V162 А70 А
-12V0.3 А0.3 А
+5Vsb2.5 А2.5 А
+12V744 W840 W
+3.3V +5V110 W100 W
-12V3.6 W3.6 W
+5Vsb12.5 W12.5 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
ProtectionUVP, OCP, OTPOTP, OCP, UVP
Manufacturer's warranty8 years2 years
Dimensions (HxWxD)86x150x150 mm86x150x160 mm
Weight1.47 kg
Added to E-Catalogoctober 2023may 2023

Power

The output power of the power supply, in other words, is the maximum power that it is capable of delivering to the system. For the computer to operate efficiently, the power supply must be greater than the total power consumption of the system at maximum load. The latter can be calculated by summing the power of individual components, however, in general, for office configurations , about 400 W450 W is considered sufficient, for medium gaming — about 600 W( 500 W, 550 W, 650 W, 700 W, 750 W), and for the top ones — power of 800 W and above ( 850 W, 1000 W and even more than 1 kW).

Efficiency

Efficiency, in this case — the ratio of the power of the power supply (see "Power") to its power consumption. The higher the efficiency, the more efficient the power supply, the less energy it consumes from the network at the same output power, and the cheaper it is to operate. Efficiency may differ depending on the load; the characteristics can indicate both the minimum efficiency and its value at an average load (50%).

It should be noted that compliance with one or another level of 80PLUS efficiency directly depends on this indicator (for more details, see "Certificate").

Cooling system

1 fan. The most common option. The power of such a system is quite enough to cool the power supplies, including Above average and relatively inexpensive. On the other hand, fan operation creates noticeable noise, especially in low-cost power supplies with small diameter fans (see "Fan Diameter").

2 fans. The second fan is usually installed in powerful power supplies, for which the power of one fan is not enough. The price for such efficiency, in addition to increased cost, is an increased noise level.

— to Semi-passive cooling. A function that allows you automatically turn off the PSU cooling system in situations where the load on the power supply is low and heat dissipation is reduced. It is found only in models with active cooling. Recall that systems of this type are more efficient than passive ones, but they consume additional energy and create noise during operation. Accordingly, at a light load, when intensive cooling is not required, it is more reasonable to turn off the fans — this saves energy and reduces the noise level.

Passive(radiators). Compared to fans, heatsinks have a number of advantages: for example, they do not create noise at all and do not require their own power supply (thus reducing overall power consumption). On the other hand, they are much less efficient, as a result — the power...of power supplies with passive cooling does not exceed 600 watts. In addition, these PSUs are quite expensive.

Fan bearing

The bearing is the piece between the rotating axle of the fan and the fixed base that supports the axle and reduces friction. The following types of bearings are found in modern fans:

— Sliding. The action of these bearings is based on direct contact between two solid surfaces, carefully polished to reduce friction. Such devices are simple, reliable and durable, but their efficiency is quite low — rolling, and even more so the hydrodynamic and magnetic principle of operation, provide much less friction.

— Rolling. They are also called "ball bearings", since the "mediators" between the axis of rotation and the fixed base are balls (less often — cylindrical rollers) fixed in a special ring. When the axis rotates, such balls roll between it and the base, due to which the friction force is very low — noticeably lower than in plain bearings. On the other hand, the design turns out to be more expensive and complex, and in terms of reliability it is somewhat inferior to both the same plain bearings and more advanced hydrodynamic devices. Therefore, although rolling bearings are quite widespread nowadays, however, in general, they are much less common than the mentioned varieties.

— Hydrodynamic. Bearings of this type are filled with a special liquid; when rotated, it creates a layer on which the moving part of the bearing slides. In this way, direct contact between hard surfaces is avoided and friction is significantly reduced compared to previous...types. Also, these bearings are quiet and very reliable. Of their shortcomings, a relatively high cost can be noted, but in fact this moment often turns out to be invisible against the background of the price of the entire system. Therefore, this option is extremely popular nowadays, it can be found in cooling systems of all levels — from low-cost to advanced.

— Magnetic centering. Bearings based on the principle of magnetic levitation: the rotating axis is "suspended" in a magnetic field. Thus, it is possible (as in hydrodynamic ones) to avoid contact between solid surfaces and further reduce friction. Considered the most advanced type of bearings, they are reliable and quiet, but expensive.

SATA

The number of SATA power connectors provided in the PSU.

Nowadays, SATA is the standard interface for connecting internal hard drives, and it is also found in other types of drives (SSD, SSHD, etc.). Such an interface consists of a data connector connected to the motherboard, and a power connector connected to the PSU. Accordingly, in this paragraph we are talking about the number of SATA power plugs provided in the PSU. This number corresponds to the number of SATA drives that can be simultaneously powered from this model.

PCI-E 8pin (6+2)

The number of PCI-E 8pin (6+2) power connectors provided in the PSU design.

Additional PCI-E power connectors (all formats) are used to additionally power those types of internal peripherals for which 75 W is no longer enough, supplied directly through the PCI-E socket on the motherboard (video cards are a typical example). In PC components, there are two types of such connectors — 6pin, providing up to 75 W of additional power, and 8pin, giving up to 150 W. And the 8pin (6 + 2) plugs used in power supplies are universal: they can work with both 6-pin and 8-pin connectors on the expansion board. Therefore, this type of plug is the most popular in modern PSUs.

As for the quantity, on the market you can find models for 1 PCI-E 8pin (6 + 2) connector, for 2 such connectors, for 4 connectors, and in some cases — for 6 or more. Several of these plugs can be useful, for example, when connecting several video cards — or for a powerful high-performance video adapter equipped with several PCI-E additional power connectors.

+12V1

The maximum current that the PSU is capable of delivering to the first power line is + 12V.

For more information about power lines in general, see "+3.3V". Here it is worth mentioning that 12 V is the most popular voltage among computer power connectors. It is used in almost all such connectors (with a few exceptions), and some plugs (for example, additional PCI-E power for 6 or 8 connectors) use only 12-volt lines — and in the + 12V format. And the division of + 12V power into several separate lines is used for safety purposes — in order to reduce the current flowing through each individual wire, and thus prevent excessive load and overheating of the wiring. However, some manufacturers do not specify the maximum current for individual + 12V lines and give only a general value in the characteristics; in such cases, this number is indicated in this paragraph.

+12V

The maximum power that the PSU is capable of delivering to the + 12V power line.

See "Maximum current and power" for details on power lines in general. Here it is worth mentioning that 12 V is the most popular voltage among computer power connectors. It is used in almost all such connectors (with a few exceptions), and some plugs (for example, additional PCI-E power for 6 or 8 connectors) use only 12-volt lines — and in the + 12V format. So this indicator is one of the most important characteristics of any PSU.

Note that many power supplies have several separate + 12V power lines. In such cases, the total power is indicated here, which, usually, is divided equally between the lines.

+3.3V +5V

The maximum power that the PSU is capable of delivering on the + 3.3V and + 5V power lines.

See "Maximum current and power" for details on power lines in general. Here we note that the power lines + 3.3V and + 5V are used both in the general connector for the motherboard (for 20 or 24 pins), and in specialized plugs — in particular, the SATA power connector (both) and Molex (only +5V, in addition to +12V). The power of these lines is a rather specific parameter, rarely required in fact; it is usually the same for both voltages, so it is indicated in the general clause.
Asus Prime Gold often compared