Dark mode
United Kingdom
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Metal Detectors

Comparison Nokta Makro Simplex Plus vs Garrett ACE 300i

Add to comparison
Nokta Makro Simplex Plus
Garrett ACE 300i
Nokta Makro Simplex PlusGarrett ACE 300i
Compare prices 1Compare prices 4
User reviews
0
0
13
TOP sellers
Main
Determining the depth of the target. Built-in LED flashlight
The Simplex Plus model comes without headphones and cap, while the Simplex Plus WHP model comes with wireless headphones and a cap
Target Depth Determination
On the ACE 300i, the units of measure on the depth indicator are in centimeters, while on the ACE 300, the units are in inches.
Typemetal detectormetal detector
Suitable forunderwaterground
Principle of operationVLFVLF
Coil/frame
Type
 
DD
concentric
 
Shape
 
butterfly
elliptical
 
Waterproof
Dimensions (WxD)27.9x27.9 cm17.8x25.4 cm
Number of coils11
Specs
Number of detection frequencies11
Detection frequency12 kHz8 kHz
Max. detection depth80 cm
Coin detection depth25 cm
Discriminator
Discrimination segments2012
Ground balancemanual / automatic
Features
Number of modes55
Search modesfield, park, beach, all metalszero, jewelry, custom, relics, coins
Functions
Pin-Point mode
sensitivity adjustment
threshold tone
anti-interference
tone identification
VDI identification / Target ID
target depth determination
vibration response
volume control
low charge indicator
Pin-Point mode
sensitivity adjustment
 
 
tone identification
VDI identification / Target ID
target depth determination
 
volume control
low charge indicator
More features
LCD display
display backlight
armrest
built-in speaker
headphone output
 
built-in flashlight
LCD display
 
armrest
built-in speaker
headphone output
headphones
 
General
Power sourceproprietary battery4xAA
Additionally includeduSB cable for charging and data transferbatteries, case
Shaft length63 – 132 cm102 – 135 cm
Weight1.3 kg1.27 kg
Added to E-Catalogfebruary 2020june 2016

Suitable for

- Ground. Metal detectors designed to find metal objects buried in the ground - from coins and other historical artifacts to pipelines and caches. They can have different characteristics and scope of application - from the simplest models, suitable only for collecting scrap metal, to powerful professional devices capable of searching even at a depth of a couple of meters. The coil can be protected from moisture (see below), but ground metal detectors are not designed for complete immersion in water.

- Underwater. Metal detectors, designed, as the name suggests, to search for objects under water - primarily at the bottom of reservoirs. Their main features are due to optimization for the environment: a sealed waterproof case (in most cases, with the ability to submerge the entire body to a depth of several meters), the ability to work with wet salty soils, and a weight distribution designed for ease of use under water. Also, such models are usually equipped with waterproof headphones. Note that buying such a device for land use is hardly justified: holding an underwater metal detector in the air is not as convenient as a regular ground detector, and the expensive moisture protection of the case loses all its meaning.

- Inspector. Devices designed to conduct searches and search for metal objects on the human body, under clothing. They are used by law enfo...rcement agencies, security services at airports, train stations, security agencies, etc. Note that in this case we are not talking about stationary “frames”, but only about hand-held detectors. Almost all of them belong to pinpointers (see “Type”) and have a fairly compact size. Thanks to this, the device can be used as a portable device for express inspections, constantly carried with you along with other equipment. However, such a detector can also be useful at a stationary checkpoint, in addition to the frame - it helps to determine exactly where on the body the object that “disturbed” the frame is located.

For mine clearance. Highly specialized metal detectors for detecting mines or other explosive objects left by the echo of wars and hostilities. Such devices do not need to separate finds by type of metal. Their main purpose is to search for large projectiles, but there are other types of devices for solving specific problems (for example, detecting plastid with a fuse). Small pieces of hardware are usually ignored by such metal detectors. Mine clearance detectors are rarely found in common use, and they are incredibly expensive. Devices for this purpose are heavy and inconvenient, but durable and resistant to weather conditions. They are aimed at professional use by the military and rescue workers.

Type

The design of the coil(s) of the metal detector.

— Concentric. The name of this type is due to the fact that such a coil includes two separate windings — receiving and transmitting — one of which is located inside the other. It is used in metal detectors that use the principles of VLF and VLFEX (see above). The field from a concentric coil has a small width, which determined both its advantages and disadvantages: on the one hand, due to this, it is possible to determine the location of an individual find with high accuracy, on the other hand, it takes a lot of time and effort to carefully examine vast areas. This shortcoming can be partly compensated for by the elliptical shape (see below). Also note that concentric models are quite sensitive to mineralized soils.

— Mono. The simplest type of coil, having only one winding. This option is used in PI, OR and RF devices, and in the latter case, two mono-coils must be installed. The main advantages and disadvantages of this type are similar to those described above concentric.

— D.D. Also known as Double-D. Such coils have a pair of windings in the form of the letters D, turned in different directions and arranged closely so that they form a circle or an ellipse. In terms of application, DDs are similar to the concentric coils described above, but they differ in the shape of the generated field: it is a narrow plane directed along th...e line of contact of the windings. This makes it possible to cover a fairly wide band in one pass, and also reduces the sensitivity to interference from mineralized soils. Among the shortcomings, compared with concentric ones, it is worth noting the high cost and lower accuracy in the localization of individual finds (however, the latter can be compensated by the skills and experience of the operator).

— Super-D. Coils of a specific design, consisting of three windings — a central one, which plays the role of a transmitter, and two external ones, working for reception. They were developed specifically for ZVT metal detectors (see "The principle of operation"), taking into account the features of their work.

Shape

The shape of the coil (frame) of the metal detector.

Round. The traditional form used in almost all types of ground and underwater metal detectors (see "Type"); the only exceptions are models that work according to the RF method (see "Operating principle"). When using concentric coils (see "Coil Type"), this option allows you to create a conical field, which is convenient for pinpointing the location of the find, but reduces the covered area and makes it difficult to search over a large area; models with DD coils do not have this drawback.

Elliptical. The shape in the form of a longitudinally elongated ellipse allows you to somewhat "stretch" the field created by the metal detector in length. This is especially true for coils of the concentric type — however, such an expansion somewhat reduces the positioning accuracy of individual finds. But in coils of the DD type, where the accuracy is by definition low, the choice between round and elliptical shape is most often not fundamental.

Rectangular. A specific form used in RF or PI instruments. For technical reasons, it is considered optimal for such devices, but it is practically not found in other types of metal detectors.

Butterfly. Another option used in DD coils along with the ellipse (see above). In fact, it consists of two elliptical windings..., partially combined and resembling butterfly wings in shape — hence the name. This option is typical mainly for large-sized DD coils; with a large width, it is considered more optimal than an ellipse.

Dimensions (WxD)

The size of the standard coil (frame) of the metal detector. Theoretically, the larger it is, the deeper the device is able to “see” and the more space it captures in one pass, but the worse it is suitable for searching for small objects and the lower the accuracy with which it localizes them. At the same time, these characteristics depend on so many other factors that in fact, the size of the coil itself affects them very little.

Note that for coils (frames) of an elliptical shape, only one size can be indicated — along the length.

Detection frequency

The operating frequency (or frequency range) of the metal detector. This is one of the most important parameters when choosing a device, because the optimal frequency for different cases will be different — depending on the size and material of the items being searched, the characteristics of the soil and other factors. Detailed recommendations on the choice of frequency for each specific situation can be found in special sources; And already on the basis of this information, it is worth choosing a specific model.

Note that the actual frequency at which the metal detector will operate also depends on the installed coil — they are usually made for a specific frequency. Therefore, to use the full capabilities of the device with the ability to adjust this parameter, you may need replaceable coils.

Max. detection depth

The greatest depth at which a metal detector is guaranteed to be able to detect a metal object. Note that this parameter is most often quite approximate, moreover, somewhat conditional. This is due to the fact that it is usually indicated for an perfect environment (low-mineralized soil, a fairly large object, the material of which optimally matches the frequency of detection of the coil, etc.), and even for such conditions it is difficult to derive an absolutely accurate value. Therefore, in fact, the detection depth is highly dependent on a number of additional factors (from soil characteristics to user skills) and can be significantly less than indicated in the characteristics. Nevertheless, the claimed depth describes the capabilities of the metal detector quite well, and it is quite possible to compare different models with each other.

Note that a large depth not only increases the cost of the device, but can also adversely affect its ability to detect small objects.

Coin detection depth

The deepest depth at which a metal detector is capable of detecting small coins and other objects of similar size. Many users buy a device with the intention of “hunting” for metal trifles, so manufacturers often indicate this parameter separately in the specifications. Due to the small size of the coins, their detection depth is usually much less than the total maximum detection depth (see above).

Discrimination segments

The number of individual discrimination programs provided in the design of the metal detector. In this case, discrimination means filtering the detected objects using a discriminator (see above) so that the device does not work on unwanted objects such as pieces of foil, bottle caps, etc. You can also configure such a filter completely manually, but this may require special knowledge and create difficulties for inexperienced users. To avoid this, some models may have preset programs instead of manual settings. Thanks to such programs, the user just needs to select from the list what type of objects the metal detector should react to, and all the necessary settings will be set by the device's electronics.

Ground balance

Ground balancing method provided in the design of the metal detector. By itself, such balancing is a setting of work parameters for the characteristics of a particular soil — after all, depending on its mineralization, humidity, etc. The soil affects the search signal in different ways, and the device electronics must take this effect into account for high-quality processing of such a signal. Due to the correct balancing, the detection of the desired objects is ensured and at the same time the probability of false positives is minimized; and it can be done in the following ways:

Automatic. The most convenient type of balancing that does not require the user to manually adjust the device. Usually, tuning requires some time to move the coil up and down above the ground until the automation sets the necessary parameters. There are two types of auto tuning: preset and tracking. The first option involves balancing the metal detector for a specific type of soil before starting work, after which the device uses the same parameters until the next setting. Such a scheme is inexpensive and can be used even in fairly simple models, but it is not very reliable: even a small change in the type of soil under the coil leads to a decrease in the effective detection depth and an increase in the probability of false positives. Follow-up balancing does not have this disadvantage: devices with this function constantly monitor the characteristics of t...he soil and make the necessary corrections to the operating parameters right in the process of operation. This increases the efficiency of the search, however, the price of such devices is very high.

— Manual. As the name implies, with such balancing, the necessary parameters must be set by the user himself. This option is considered the most reliable, because. even the most advanced automatic systems do not always work perfectly; And yes, this setup is cheap. On the other hand, it requires certain skills from the operator and may not be suitable for inexperienced users.

— Manual / automatic. A variant that combines both types of balancing described above; in such models, the user can choose the way of setting as they wish.
Nokta Makro Simplex Plus often compared
Garrett ACE 300i often compared