United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Powerbank

Comparison Ugreen PB205 vs ANKER 737 Power Bank

Add to comparison
Ugreen PB205
ANKER 737 Power Bank
Ugreen PB205ANKER 737 Power Bank
Compare prices 2Compare prices 7
TOP sellers
Main
Power Delivery 3.1. Overheat protection: ActiveShield 2.0
Battery capacity25000 mAh24000 mAh
Real capacity15700 mAh15100 mAh
Battery capacity90 W*h89 W*h
Battery typeLi-PolLi-Pol
Charging gadgets (outputs)
USB type C22
USB-A11
Max. power (per 1 port)140 W140 W
Power output (all ports)120 W140 W
USB type С
140 W
5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A, 28V/5A
140 W
5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A, 28V/5A
USB type C (2nd)
65 W
5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/3.25A
140 W
5V/3A, 9V/3A, 12V/3A, 15V/3A, 20V/5A, 28V/5A
USB A
22.5 W
4.5V/5A, 5V/4.5A, 9V/2A, 12V/1.5A
18 W
5V/3A, 9V/2A, 12V/1.5A
Power bank charging
Power bank charging inputs
USB type C
USB type C
Power bank charge current via USB3 А3 А
Power bank charge power65 W140 W
Full charge time2 h0.9 h
Features
Low current charging
Pass-through charging
Fast charge
Quick Charge 3.0
Power Delivery 3.1
Quick Charge 3.0
Power Delivery 3.1
Bundled cables (adapters)
USB type C
 
Features
info display
info display
General
Body materialplasticplastic
Dimensions160х80х20 mm156x55x50 mm
Weight400 g630 g
Color
Added to E-Catalognovember 2023november 2022

Battery capacity

The higher the battery capacity, the more energy the power bank is able to accumulate and then transfer when charging to gadgets connected to it. But it should be borne in mind that not all of the accumulated energy goes specifically to charging – part of it is spent on service functions and inevitable losses in the process of transmission. So in the specifications, the real capacity of the power bank is also often specified. If there is no data on real capacity, then when calculating it is worth proceeding from the fact that it is usually somewhere 1.6 times lower than the nominal one. For example, for a model with a nominal capacity of 10,000 mAh, the actual value will be approximately 6300 mAh.

As for the specific values of the nominal capacity, then in models with the lowest performance it is 5000 – 7000 mAh and even less ; such power banks are suitable as a backup source of energy for 1 – 2 smartphone charging with a not very capacious battery or other similar gadget. The 10,000 mAh solutions are the most popular nowadays – in many cases, this option provides the best price-capacity ratio. The 20,000 mAh and 30,000 mAh options are also very common. But even a capacity of 40,000 mAh or more, thanks to the development of modern...technology, is quite common.

Real capacity

The real capacity of the power bank.

Real capacity is the amount of energy that a power bank is able to transfer to rechargeable gadgets. This amount is inevitably lower than the nominal capacity (see above) — most often by about 1.6 times (due to the fact that part of the energy goes to additional features and transmission losses). However, it is by real capacity that it is easiest to evaluate the actual capabilities of an external battery: for example, if this figure is 6500 mAh, this model is guaranteed to be enough for two full charges of a smartphone with a 3000 mAh battery and smartwatches for 250 mAh.

The capacity in this case is indicated for 5 V — the standard USB charging voltage. At the same time, the features of milliamp-hours as a unit of capacity are such that the actual amount of energy in the battery depends not only on the number of mAh, but also on the operating voltage. In fact, this means that when using fast charging technologies (see below) that involve increased voltage, the actual value of the actual capacity will differ from the claimed one (it will be lower). There are formulas and methods for calculating this value, they can be found in special sources.

Battery capacity

Battery capacity in watt-hour. These units of measurement are less popular than MilliAmp hour, but are more physically correct: they accurately describe the amount of energy accumulated by the battery. Thanks to this, in terms of capacity in Wh, it is possible to compare batteries with different rated voltages (while for mAh this is not allowed — additional calculations must be carried out using special formulas). At the same time, Wh can be converted to mAh without much difficulty if the battery voltage is known (for power banks this is in most cases 3.7 V): to do this, the capacity in Wh must be divided by the voltage and multiplied by 1000.

Power output (all ports)

The total charge power provided by the power bank on all connectors overnight - when devices are connected simultaneously to all charging ports.

This parameter is given due to the fact that the total charge power does not always correspond to the sum of the maximum powers of all available ports. The built-in battery of a power bank often has its own limitation on the output power. Therefore, for example, in a model with two 18 W USB ports, each total charge power can be the same 18 W. Note that the distribution of power among the connectors may be different: in some models it is divided equally, in others it is divided in proportion to the maximum current strength (if it differs on different ports). These nuances should be clarified using the detailed characteristics of the charging connectors.

If you plan to regularly use all power bank connectors at once, you should pay attention to this indicator.

USB type C (2nd)

Characteristics of the second USB C port. Read more in the paragraph above.

USB A

A standard USB A port is characterized by the rated power supplied by the power bank when a load is connected to the first or only USB A output and the current strength. If there are several connectors of this type, the first one is considered to be capable of delivering more power.

The speed of the charging process directly depends on this indicator. Power is traditionally calculated by multiplying current by voltage; However, the standard voltage for USB power is 5 V, so current is considered to be the main indicator of power.

The charging power and, accordingly, the speed of the process depend on the current strength. Nowadays, on USB ports, a current of 2 A or 2.1 A is considered basic and quite modest, 2.4 A and 2.5 A are average, 3 A and more are noticeably above average, and certain fast charging technologies allow you to achieve values of 4 A. 4.5 A and 5 A. However, it is worth considering that to operate at high current, such an opportunity must be provided not only in the power bank, but also in the gadget being charged. So when purchasing a model, it doesn’t hurt to check whether the devices being charged suppo...rt high charge currents.

It is also worth noting two nuances associated with the presence of multiple USB charging ports. Firstly, they may differ in the current they produce. This allows you to select the optimal connector for each device: for example, to quickly charge a tablet with a capacious battery, it is desirable to have a higher current, and a device with a low charging current can be connected to a “weaker” port, so as not to create unnecessary load on the battery and controller. The second caveat is that if all USB connectors are used simultaneously, the current supplied by each of these connectors may be lower than the maximum; in other words, not all power banks allow you to simultaneously use USB ports at the maximum possible power. You can understand whether such a possibility exists by looking at the charge power (see below); if the charge power is not indicated, you should refer to detailed documentation from the manufacturer.

Power bank charge power

The power in watts at which the power bank is charged under normal conditions.

The higher the charging power, the less time it takes to charge (given the same battery capacity). For example, fast charging of a power bank typically means a charging power of 30W or more. However, this parameter does not directly affect compatibility with charging devices: modern portable batteries can work with chargers of both higher and lower power. In the first case, the battery controller will automatically limit the charging current, while in the second case, charging will simply take more time.

Full charge time

The time required to fully charge a battery discharged “to zero”. Features of the charging process in different models may be different, respectively, and the time required for this may differ markedly even with the same capacity.

Fast-charging batteries tend to be more expensive. Therefore, choosing this option makes sense if you do not have much time to replenish your energy supply — for example, for hiking. However, keep in mind that charging at full speed may require a charger that supports certain fast charging technologies (see below).

It must also be said that in most modern batteries, the charging speed is uneven — it is highest at the several first percent from zero, then gradually decreases. Therefore, the time required to replenish the energy supply by a certain percentage will not be strictly proportional to the total claimed charge time; moreover, this time will depend on how much the battery is already charged at the time the procedure starts. For example, charging from 0 to 50% will take less time than from 50 to 100%, although both there and there we are talking about half the capacity.

Pass-through charging

A function that allows a power bank connected to the mains to transfer power to other external devices for charging. Note that pass-through charging can be implemented in different ways. In some cases, a portable battery can supply all incoming power from an energy source through a USB port, in others, the power bank coordinates the power consumption with the gadget being charged and accumulates the remaining energy in the cells of its own battery. In the latter version, both devices are charged at the same time. However, the presence of such a function is not often specified by the manufacturer. Sometimes even the manuals do not provide information on end-to-end charging. Therefore, it is better to focus on the reviews and, before buying, further clarify the availability of pass-through charging.
Ugreen PB205 often compared
ANKER 737 Power Bank often compared