United Kingdom
Catalog   /   Computing   /   Gaming & Entertainment   /   VR Headsets

Comparison Sony PlayStation VR2 2023 vs Valve Index VR KIT

Add to comparison
Sony PlayStation VR2 2023
Valve Index VR KIT
Sony PlayStation VR2 2023Valve Index VR KIT
Compare prices 11
from £1,599.00 
Outdated Product
TOP sellers
Main
Display refresh rate of 144 Hz in experimental mode. The response time of the matrix is from 0.330 ms to 0.530 ms. The package includes a VR helmet, a pair of controllers and two base stations.
CompatibilityPC / game consolePC / game console
Specs
Screen resolution
4000x2040 px /2000x2040 by eye/
2880x1600 px /1440x1600 by eye/
Field of view110 °130 °
Refresh rate120 fps
144 fps /in experimental mode, 120 fps with full backwards compatibility/
Accelerometer
Gyroscope
Lens distance adjusting
Pupillary distance adjustment
Multimedia
USB A
USB C+
DisplayPortv1.2
HDMI+
Microphone
Headphones
Headphone output
General
Controlpush-button
Controller
External sensors
Materialplasticplastic
Dimensions (HxWxD)212х158х278 mm
Weight560 g
Added to E-Catalogfebruary 2023november 2019

Screen resolution

Resolution of built-in displays in glasses equipped with such equipment — that is, models for PC / consoles, as well as standalone devices (see "Intended use").

The higher the resolution, the more smooth and detailed the “picture” is given out by glasses, all other things being equal. Thanks to the development of technology nowadays, models with Full HD (1920x1080) screens and even higher resolutions are not uncommon. On the other hand, this parameter significantly affects the cost of points. In addition, it is worth remembering that in order to fully work with high-resolution displays, you need powerful graphics capable of playing relevant content. In the case of glasses for PCs and set-top boxes, this puts forward corresponding requirements for external devices, and in standalone models you have to use advanced integrated video adapters (which affects the cost even more).

Field of view

The viewing angle provided by virtual reality glasses is the angular size of the space that falls into the user's field of view. Usually, the characteristics indicate the size of this space horizontally; however, if you need the most accurate information, this point needs to be specified separately.

The wider the viewing angle — the more the game space the user can see without turning his head, the more powerful the immersion effect and the less likely that the image will be subject to the "tunnel vision" effect. On the other hand, making the field of view too wide also does not make sense, given the characteristics of the human eye. In general, a large viewing angle is considered to be an angle of 100° or more. On the other hand, there are models where this indicator is 30° or even less — these are, usually, specific devices (for example, drone piloting glasses and augmented reality glasses), where such characteristics are quite justified given the overall functionality.

Refresh rate

The refresh rate supported by the glasses' built-in screens, in simple terms, is the maximum frame rate that the screens are capable of delivering.

Recall that screens are provided in models for PC / consoles and in stand-alone devices (see "Intended use"). And the quality of the picture directly depends on this indicator: other things being equal, a higher frame rate provides a smoother image, without jerks and with good detail in dynamic scenes. The flip side of these benefits is an increase in price.

It is also worth considering that in some cases the actual frame rate will not be limited by the capabilities of the glasses, but by the characteristics of the external device or the properties of the content being played. For example, a relatively weak PC graphics card may not be able to pull out a high frame rate signal, or a certain frame rate may be set in the game and not provide boosting. Therefore, you should not chase after large values and points with a frequency of 90 fps will be enough.

Pupillary distance adjustment

The ability to adjust the interpupillary distance of glasses — that is, the distance between the centers of two lenses. To do this, the lenses are mounted on movable mounts that allow them to be moved to the right / left. The meaning of this feature is that for normal viewing, the centers of the lenses must be opposite the user's pupils — and for different people, the distance between the pupils is also different. Accordingly, this setting will be useful anyway, but it is especially important for users of a large or petite physique, whose interpupillary distance is noticeably different from the average.

At the same time, there is a fairly significant number of glasses that do not have this function. They can be divided into three categories. The first is devices where the lack of adjustment for the interpupillary distance is compensated in one way or another (for example, by a special form of lenses that does not require adjustment). The second is models where this adjustment is not needed in principle (in particular, some augmented reality glasses). And the third — the simplest and cheapest solutions, where additional adjustments were abandoned to reduce the cost.

USB A

The glasses must have at least one USB A connector. This is a full-sized USB connector, the same type as standard USB ports on computers and laptops. But its functions may be different, depending on the functionality of the glasses (see "Purpose"). So, in models for PCs and consoles, USB is one of the connection connectors used in conjunction with a video interface such as HDMI or DisplayPort: an image is transmitted via a video connector, and data from sensors on glasses is transmitted via a USB connection, which is necessary to change the picture and create " immersion effect. And in independent devices, USB A is used to connect various additional accessories — for example, flash drives with applications or other content. It is also possible to use this connector to charge the battery, although this method of use in general is not typical for it.

USB C

The presence in the glasses of the connector type USB-C. This is a relatively new type of USB port, which has a miniature size (slightly larger than microUSB) and a convenient double-sided design that allows you to connect the plug in either direction. It can be found in glasses for various purposes and, accordingly, provide different ways of application. So, in models for PC / consoles, this connector is used similarly to traditional USB — with the main connection, in parallel with the HDMI or DisplayPort video interface. In standalone devices, on the other hand, USB-C is mainly used to charge the battery and connect to a computer for direct file exchange, settings management, firmware updates, etc.

Also note that this paragraph may specify the USB version, which corresponds to the USB-C connector. Nowadays, two versions are relevant — 3.2 gen 1 and 3.2 gen 2; for VR glasses, the difference between them is generally not fundamental.

DisplayPort

Availability of DisplayPort input in glasses; the version of this interface can also be specified here.

DisplayPort is one of the most popular high-resolution digital video interfaces these days (however, audio transmission is also possible). It is especially common in computer technology, and is actually a standard in Apple PCs and laptops. Only glasses for computers and set-top boxes are equipped with this type of input (see “Purpose”) - it is used to receive a video signal (and audio signal, if necessary) from an external device. As for DisplayPort versions, the options here could be:

- v.1.2. The earliest (2010) version that is relevant today, but at the same time a more than functional version. Fully supports video quality up to 5K (30 fps), and with certain restrictions - up to 8K.
- v.1.3. Update released in 2014. It provided the opportunity to fully work with 8K resolutions at 30 fps, and with 4K and 5K at 120 and 60 fps, respectively.
- v.1.4. Updated in 2016, in which the bandwidth was further increased - up to support for 5K video at 240 fps and 8K at 120 fps. In addition, there is compatibility with HDR 10 technology, which improves color reproduction and overall picture quality.

HDMI

Availability of HDMI input in glasses; the version of this interface can also be specified here.

HDMI is the most common interface for high-definition video and multi-channel audio today; it is widely used in both computers and video equipment. In VR glasses, this type of connector is responsible for receiving video and audio signals from an external device; accordingly, only models for PC / consoles have such a connector (see "Intended use"). As for HDMI versions, the options may be as follows:

— v.1.4. The earliest of the current standards, the 2009 model (with subsequent updates). Allows you to work with Full HD video at a frame rate of up to 120 fps, but with 4K content, the speed is limited to 24 fps.

— v.2.0. Standard introduced in 2013. Also known as HDMI UHD, thanks to full support for UltraHD 4K (provides frame rates up to 60 fps). And in further updates of this standard, support for HDR was added.

— v.2.1. Version released to the market in 2017. It allows you to achieve a frame rate of 120 fps even at 8K resolutions, not to mention more modest ones. HDMI Ultra High Speed cables are required for full use, but the features of earlier versions are available with regular cables.

Control

The type of control provided in the design of the glasses.

Note that in this case we are talking exclusively about our own controls installed directly on the body of the glasses; many models are equipped with external controllers (see "Remote control"), but they are not taken into account in this case.

- Button. Control with classic buttons. The main advantage of this option is simplicity and low cost, while its functionality is quite enough to work with basic functions like menu navigation. On the other hand, the buttons require some effort when pressed, which can be somewhat inconvenient, especially when using the controls intensively. However, most often this disadvantage is still not fundamental.

- Touch. Control using sensors that are sensitive to touch and do not require pressing (unlike buttons). In the simplest models, these are separate sensors, the functions of which are similar to the same buttons. In more advanced devices, entire touch panels can be provided, for example, allowing you to control the cursor visible through the glasses and use special gestures. Anyway, this type of control is more advanced than push-button, however, it is more expensive, and therefore less common.
Sony PlayStation VR2 2023 often compared
Valve Index VR KIT often compared