Dark mode
United Kingdom
Catalog   /   Sound & Hi-Fi   /   Portable Audio   /   MP3 Players

Comparison Sony NW-A45 vs Apple iPod touch 6gen 32Gb

Add to comparison
Sony NW-A45
Apple iPod touch 6gen 32Gb
Sony NW-A45Apple iPod touch 6gen 32Gb
Compare prices 3
from £49.99 
Outdated Product
User reviews
0
0
13
TOP sellers
Main
An updated model of the line, with improved playback thanks to DSEE HX technology. NFC chip. Digital amplifier S-Master HX. Digital noise reduction.
Headphones not included
Typeaudiomedia Player
ОСiOS
Built-in memory16 GB32 GB
Memory card typemicroSD/SDHC/SDXC
Specs
Frequency range20 – 40000 Hz20 – 20000 Hz
Power35 mW
Features
Audio formats supportMP3, WMA, AAC, HE-AAC, ALAC, AIFF, Linear PCM, DSD, FLACAAC, MP3, AIFF, WAV, Apple Lossless
Other formatsMPEG4, JPEG, BMP, GIF, TIFF, PSD, PNG
Codec support
aptX
 
Features
equalizer
FM receiver
 
 
 
equalizer
 
voice recorder
built-in speaker
digital camera
Connection
Wi-Fi
Bluetoothv 4.2v 4.1
Outputs
mini-Jack (3.5 mm)
mini-Jack (3.5 mm)
Screen
Screen
colour
3.1 "
800x480 px
TFT
touch screen
colour
4 "
1136x640 px
IPS
touch screen
General
Operating time (audio)45 h40 h
Operating time (video)8 h
Charging connectorbrandedLightning
Accelerometer
Firmware update
Materialmetalmetal
Size (HxWxT)98x56x11 mm123.4х58.6х6.1 mm
Weight98 g88 g
Color
Added to E-Catalognovember 2017july 2015

Type

- Audio. MP3 players in the original, most traditional sense are devices designed to play music and other audio. There are models without a display, but many of the audio players are equipped with screens and can work with auxiliary file formats - like TXT for displaying song lyrics or JPG for viewing album covers or even photos. But the player in them is designed to work only with sound and does not allow video playback.

- Media player. This type includes all players that can play video. The specific characteristics of such models may vary significantly - from portable gadgets with 1.5" - 2" displays and support for specific formats to large 4 - 5" devices capable of working with unconverted files. But in any case, if you need a pocket player with the ability not only listen to music, but also watch videos - it’s worth choosing from similar models.

Hi-Fi player. A specific type of audio player (see above), created with the expectation of maximum quality of reproduced sound. Uses high-quality components and advanced signal processing circuits; Because of this, such devices are an order of magnitude more expensive than conventional audio players, but in terms of sound quality they are comparable to stationary Hi-Fi class systems. It is almost mandatory for such models to support at least one lossless format like FLAC or A...PE; also only in such devices is it possible to work in DAC mode (see “Functions/capabilities”). In addition, the design may provide specialized interfaces - for example, balanced or optical (see “Outputs”). Thanks to all this, devices of this type can be useful both to demanding audiophiles and to those who work professionally with sound.

ОС

The operating system under which the player is running.

An operating system is not just any shell programme; this name is applied to the most advanced platforms. The OS has extensive capabilities that go far beyond the traditional functionality of the players, in addition, these capabilities can be further expanded by installing additional applications for various purposes — from online music services and media libraries to games, social network clients, etc. Thus Thus, the presence of an OS usually means that the device is a media player (see "Type"); however, not every media player has a full OS. Hi-Fi players can also have such firmware, however, the OS in them is often heavily modified, and not all such devices allow the installation of third-party applications.

Specific options for the OS can be as follows:

Android. Operating system developed by Google, widely used by manufacturers of portable electronics; practically ousted other systems from the market, the only alternative is iOS(see below). The original Android is tightly integrated with Google services and uses the Google Play app store; however, there are many branded shells and modifications on the market, including those with rather radical changes. And you can install programs not only from the application store, but also from any other sources — by downloading the installation file to the device. The system h...as an open source code, anyone can write software for this OS, thanks to which the set of applications for Android is extremely extensive, but many of them do not differ in quality.

iOS. Apple's proprietary operating system is not used by other manufacturers. It is closed: you can install additional applications only from the App Store proprietary storage, and for music and video you need to use the iTunes service. In addition, to create software for iOS, you need to obtain a paid license, which limits the circle of developers. On the other hand, iOS is quite convenient in that the user doesn't have to dig through an extensive set of settings; and apps in the App Store go through fairly strict quality and security controls.

Built-in memory

The amount of built-in memory installed in the player.

This parameter directly determines how much music and other content can be stored in the device without resorting to memory cards (especially since some models do not support such cards at all). For comparison: the size of one MP3 file usually does not exceed 20 MB, the same composition in lossless format has 3-4 times more volume, a film in standard quality takes on average from 700 MB to 2.5 GB, in HD 720p — up to 5 – 6 GB. Thus, in terms of data storage, the more internal memory, the better. On the other hand, the price of the player directly depends on the storage capacity. Thus, some models are available in several modifications, differing in the amount of memory and price.

When choosing, note that part of the memory will inevitably be occupied by software firmware and pre-installed applications; sometimes this part turns out to be quite significant — for example, in models with an OS on board (see above), several gigabytes can be occupied. Also note that memory cards in terms of gigabytes of volume are cheaper than built-in drives, and from the practical point of view, in most cases they are not inferior to them. So it makes sense to specifically look for a player with a large amount of internal memory, first of all, if this model does not work with memory cards.

Now there are players on the market with such a memory capacity: up to 8 GB, 16 GB, 32 GB, 64 GB and more. However, there are also models without built-in memory, designed for use only with memory cards.

Memory card type

Type of memory cards supported by the player.

Memory cards perform two main functions. First of all, they increase the total amount of the player's memory; at the same time, such memory in terms of gigabytes is much cheaper than built-in drives. Secondly, a memory card allows you to exchange data with another device that has a card reader; for example, it can be used to copy music to the player from a laptop.

Modern players usually use SD or microSD cards of one version or another. SD cards have dimensions of 32x24 mm and are used in relatively large devices, miniature microSD (15x11 mm), respectively, in compact models. Versions can be:

SD. This marking means that the device is capable of working with at least original SD cards (not related to later versions of SDHC or SDXC). Such cards can have up to 4 GB capacity, their capabilities are quite enough for most tasks related to content playback.

SD/SDHC. Models compatible with both the original SD (see above) and the newer SDHC format. This format allows you to create removable media up to 32 GB.

SD/SDHC/SDXC. Support for all major SD formats used today. About SD and SDHC, see above, and SDXC provides card capacity up to 2 TB and increased speed.

microSD. Players guaranteed to work with original microSD cards. Technically, such cards are similar to the SD cards described above and differ from them only in size. At the s...ame time, it is worth noting that a device with such a marking may actually be compatible with more advanced media (like microSDHC or even microSDXC), just the manufacturer, for one reason or another, did not go into such details. You can clarify this point by evaluating the maximum supported card volume (see below)

microSD/SDHC Players that support both the original microSD and the later microSDHC standard (see "SD/SDHC").

microSD/SDHC/SDXC. Players with this marking are compatible with all modern versions of microSD cards — both the newest microSDXC (see "SD / SDHC / SDXC"), and previous standards (see above for them).

Players are produced that have two slots for memory cards at once — usually microSD. Basically, these are Hi-Fi devices (see "Type"), and this feature is provided for an additional increase in available memory volumes: Hi-Fi content has a significant amount and requires appropriate storage.

Frequency range

The range of audio frequencies that the player is capable of reproducing. The wider this range — the more complete the picture of the sound, the less likely that the device will "cut off" part of the sound spectrum. At the same time, when choosing this parameter, several points should be taken into account.

First, the average human ear is capable of hearing sounds from approximately 16 Hz to 20 kHz; deviations from these figures are small, and with age the range narrows even more. In fact, this means that for normal hearing, it is enough just to cover this gap. And the wider boundaries indicated in the characteristics of the player will be more of a marketing ploy than a really significant moment. Secondly, do not forget that the sound quality is determined not only by the range, but also by a number of other characteristics of the player — signal-to-noise ratio, frequency response, etc.; therefore, a wide range by itself does not guarantee a pleasing sound. And thirdly, the features of the audible sound also largely depend on the headphones used and their frequency range: all the advantages of a player with a wide frequency range can come to naught if the frequencies are “cut off” by the headphones.

Power

The higher the power, the louder the sound you can get on the headphones, all other things being equal. In addition, higher power allows you to connect "ears" with higher impedance to the device (although there is no hard correlation here, and models with the same output power may have different headphone impedance limits). However, in the case of ordinary (non-Hi-Fi) players, this parameter is more of a reference than practically significant: usually, the power of the amplifier in such models is quite enough to “rock” most consumer-grade headphones. But for Hi-Fi devices (see "Type") models, output power is of key importance: it determines compatibility with high-resistance studio-class "ears". Detailed help on this issue can be found in special sources.

Audio formats support

Audio file formats that the player is able to work with.

MP3. The most famous of modern digital audio formats; supported by almost all compact players, the name MP3 has even become a household name for them. Provides so-called. lossy compression, where some of the audio frequencies are lost. However, during compression, the sound is processed in such a way that it "disappears" mainly frequencies, the loss of which is imperceptible to the human ear. As a result, the sound quality can be quite high, and you can clearly distinguish high-quality MP3 from lossless format only on Hi-Fi equipment.

WAV. Another popular audio standard, originally developed for storing sound on a PC. It can technically be used to store audio in a variety of formats, but is most commonly used for uncompressed audio. Due to this, the sound quality can be quite high, and its processing does not require special computing power. The downside of this is the large volume of audio files — many times more than MP3s.

WMA. An audio format, at one time specially created for the Windows operating system. By default, it uses lossy compression (although there is also a lossless version of the WMA codec). WMA is particularly suitable for low bitrates, under such conditions it provides better quality than MP3 and takes up less space. On the other hand, this format is much less popular in high-quality digital audio.

...AAC. A format developed as a potential successor to MP3. Also provides lossy compression (see above), but allows you to achieve better quality with the same file size; this difference is especially noticeable at low bitrates. Actively promoted by Apple in iPod players; nevertheless, it is noticeably inferior to MP3 in terms of prevalence, although it is supported by a considerable number of players.

OGG. A lossy compressed digital audio format is one potential alternative to MP3. One of the key features of OGG is that as audio is encoded, the bitrate is constantly changing; at the same time, on fragments where there is no sound, the bitrate drops to almost zero (unlike MP3, where the data stream is constant, including in sections of complete silence). This makes it possible to achieve small file sizes while maintaining sound quality. Also note that the OGG format is open and not limited by patents.

FLAC. One of the formats that uses lossless audio compression. With this compression, all the details of the original sound are preserved, so lossless formats are especially appreciated by sophisticated music lovers and audiophiles. The reverse side of this quality is large volumes of files. Specifically, FLAC is perhaps the most common of today's lossless formats. This is largely due to the fact that this standard is not particularly demanding on the processing power of the player. Thanks to this, its support can be implemented even in relatively simple and inexpensive players (unlike another popular format — APE, see below). On the other hand, FLAC files are larger than APE files.

A.P.E. One of the popular lossless audio compression formats. Compared to another common standard — FLAC (see above) — APE allows you to achieve smaller file sizes with the same quality. On the other hand, to play such files, electronics with a fairly high processing power are required, so APE compatibility is relatively rare in compact players.

DSD. A specific digital audio format using the so-called. sigma-delta modulation (as opposed to pulse code used in most other formats). Such modulation provides a very high sampling rate — 2822.4 kHz; however, it cannot be compared with the usual sampling rate (see above): in this case we are talking about a specific signal format. Its properties are such that DSD support can be provided even if the player's DAC formally has a much lower sampling rate. In general, this format is considered professional, its support is found mainly in Hi-Fi models (see "Type").

DXD. Professional audio format originally created for editing DSD files (see above) — For technical reasons, original DSD is not well suited for editing. DXD uses a bit depth of 24 bits (8 bits higher than Audio CD format) and a sampling rate of 352.8 kHz (8 times higher than Audio CD). Like the original DSD, it is found mainly in Hi-Fi players.

AIFF. Audio format developed by Apple for Macs and Macbooks; a kind of "apple" analogue of the WAV described above, also in most cases used for uncompressed audio.

Audible. Proprietary file format used by the online audiobook store of the same name. One of the features of this format is that file playback is available only if you enter a login and password for the Audible online store; thus, supporting this standard usually means having a client programme to access the store.

This list is not exhaustive, modern players (especially the top category) may support other types of audio files.

Other formats

Non-audio file formats that the player can handle.

AVI. One of the most popular video file formats nowadays, it is used both in portable devices and in stationary video equipment. Technically, it is a container, that is, it can contain data processed by different codecs; playback requires that the device supports not only the AVI format, but also the corresponding codec.

MP4. Video files using the MPEG-4 container. MP4 was once one of the most popular formats for portable players, and it is this format that is usually meant when people talk about "converted video" for a media player or smartphone.

MPEG-4. Another name for the above MP4.

MKV. A video container created as an open source alternative to the above described AVI and similar standards. Very handy when creating video files with multiple embedded video, audio and/or subtitle streams, which is why it is widely used and continues to evolve.

MOV. Video file (container) format originally developed by Apple for QuickTime software players

ASF. Microsoft's proprietary format, specifically designed to work with streaming content.

SWF. A format in which animation clips are recorded based on flash technology.

jpegs. One of the most popular modern image file formats, it is the standard for digital photography. Note that graphics support, including JPEG, can be pro...vided even in players with very miniature screens — to display album art.

PNG. Popular graphic file format. In particular, it is widespread on the Internet due to the ability to achieve good quality with small file sizes.

GIF. Another popular graphic file format. Notable for the ability to create animated pictures.

BMP. One of the most common graphic formats. However, due to the rather large volumes of files, it is less common than the above standards.

txt. Text-only files, no formatting (except paragraphs). Support for this format can be provided even in players with very small screens — to view lyrics.

This list is not exhaustive, other file formats may be supported in modern compact players.

Codec support

Codecs and additional audio processing technologies supported by the Bluetooth-connected player. Initially, sound transmission via Bluetooth involves quite strong signal compression, which can greatly spoil the experience when listening to music. To eliminate this drawback, various technologies are used, in particular aptX, aptX HD, aptX Low Latency, aptX Adaptive, AAC, LDAC, LHDC. Of course, to use any of the technologies, it must be supported not only by the player, but also by the Bluetooth device with which it is used. Here are the main features of each option:

- aptX. A Bluetooth codec designed to significantly improve the quality of audio transmitted over Bluetooth. According to the creators, it allows you to achieve quality comparable to Audio CD (16-bits/44.1kHz). The benefits of aptX are most noticeable when listening to high-quality content (such as lossless formats), but even on regular MP3 it can provide a noticeable sound improvement.

- aptX HD. Development and improvement of the original aptX, allowing for sound purity comparable to Hi-Res audio (24-bits/48kHz). As in the original, the benefits of aptX HD are noticeable mainly on high-quality audio, although this codec will not be out of place for MP3.

...- aptX Low Latency. A specific version of aptX described above, designed not so much to improve sound quality, but to reduce delays in signal transmission. Such delays inevitably occur when working via Bluetooth; They are not critical for listening to music, but when watching video, there may be a noticeable desynchronization between the image and sound. The aptX LL codec eliminates this phenomenon, reducing latency to 32 ms - a difference that is imperceptible to human perception.

- aptX Adaptive. Further development of aptX; actually combines the capabilities of aptX HD and aptX Low Latency, but is not limited to this. One of the main features of this standard is the so-called adaptive bitrate: the codec automatically adjusts the actual data transfer rate based on the characteristics of the broadcast content and the congestion of the frequencies used. This, in particular, helps reduce energy consumption and increase communication reliability; and special algorithms allow you to broadcast sound quality comparable to aptX HD (24 bits/48 kHz), using much less transmitted data.

- A.A.C. A Bluetooth codec used primarily in portable Apple gadgets. In terms of capabilities, it is noticeably inferior to more advanced standards like aptX or LDAC: the sound quality when using AAC is comparable to an average MP3 file. However, for listening to the same MP3s, this is quite enough; the difference becomes noticeable only on more advanced formats.

— LDAC. Sony's proprietary Bluetooth codec. It surpasses even aptX HD in terms of bandwidth and potential sound quality, providing performance at the Hi-Res level of 24-bits/96kHz audio; There is even an opinion that this is the maximum quality that makes sense to provide for in wireless transmission - further improvement will be simply imperceptible to the human ear.

- LHDC. LHDC (Low latency High-Definition audio Codec) is a high-definition, low-latency codec developed by the Hi-Res Wireless Audio Alliance and Savitech. The codec is also known as HWA (Hi-Res Wireless Audio). When using LHDC, signal transmission is carried out with a bits rate of up to 900 kbps, a bits depth of up to 24 bits and a sampling frequency of up to 96 kHz. This ensures a stable and reliable connection with reduced latency. The codec is optimally suited for high-end wireless headphones and advanced digital audio formats.
Sony NW-A45 often compared
Apple iPod touch 6gen 32Gb often compared