United Kingdom
Catalog   /   TVs & Video   /   TVs

Comparison Sony KD-55XE8599 55 " vs Sony KD-55XE8577 55 "

Add to comparison
Sony KD-55XE8599 55 "
Sony KD-55XE8577 55 "
Sony KD-55XE8599 55 "Sony KD-55XE8577 55 "
Outdated Product
from $1,675.00
Outdated Product
TOP sellers
Size55 "55 "
Operating systemAndroid TVAndroid TV
CPUSony X1
Display
Screen surfaceglossy (anti-glare)matte
Resolution
3840x2160 px /Ultra HD/
3840x2160 px /Ultra HD/
Frame rate60 Hz120 Hz
Dynamic scene index
1000 fps /MotionFlow/
1000 fps /Motionflow/
HDR supportHDR10HDR10
Multimedia
Sound power20 W20 W
Number of speakers22
Digital tuner
DVB-T2 (terrestrial)
DVB-C (cable)
 
DVB-S2 (satellite)
DVB-T2 (terrestrial)
DVB-C (cable)
DVB-S (satellite)
DVB-S2 (satellite)
Teletext
Features
Features
Wi-Fi
TV recording
 
 
Bluetooth v 4.1
DLNA support
 
 
Wi-Fi
TV recording
Miracast
Chromecast
Bluetooth v 4.1
DLNA support
voice control
multimedia (air mouse remote)
USB file format support
AVI, MPEG-4, MKV, MOV, M2TS /MP4, WebM, WMV, Xvid/
Connectors
Inputs
USB
LAN
component
 
SCART
USB
LAN
component
composite
 
HDMI34
Outputs
mini-Jack (3.5 mm) headphones
 
mini-Jack (3.5 mm) headphones
optical
General
Wall mountVESA 200x200 mm
Power consumption180 W
Dimensions (WxHxD)
1232x772x252 mm /with stand/
1232x772x252 mm
Dimensions without stand (WxHxD)1232x717x57 mm1232x717x57 mm
Weight
19.5 kg /with stand/
19.5 kg
Color
Added to E-Catalogjune 2017april 2017

CPU

Sony X1. The Sony X1 processor is used in Sony TVs from several series: XH and XG. Such TVs occupy several niches at once: the low-cost category and the middle class. The most inexpensive models show a picture in 4K resolution without dynamic range support, more advanced models use 4K HDR. Basically, these are simple models that are designed only for watching videos. For dynamic games, TVs with such a processor are less suitable.

Sony X1 Extreme. The Sony X1 Extreme processor is 40% more powerful than its predecessor, the Sony X1, and is designed to work with 4K HDR images. Working with HDR dynamic range makes it possible to display a realistic picture of increased quality on the screen. TVs with the Sony X1 Extreme processor are mid-range and high-end models. The image qualit is improved by supporting dynamic backlighting. An important feature of the Sony X1 Extreme is the use of two independent colour rendering databases (Dual database processing). Object-based HDR remaster technology analyzes the image displayed on the screen, matches colours with a database and adjusts them for viewing on a particular TV. Thanks to Super Bit Mapping 4K HDR, colour transitions become smoother and more natural, making the picture even more realistic.

Sony X1 Ultimate. The Sony X1 Ultimate processor can handle both 4K (3840 x 2160) and 8K HDR (7680 x 4320) i...mages, depending on the screen size. TVs with such a processor provide a picture with the deepest detail and the highest quality rendering of textures. TVs with the Sony X1 Ultimate processor are mostly advanced models from the middle and expensive segment. Such TVs provide the effect of complete immersion in the atmosphere of the video being watched. Sony X1 Ultimate supports X-Reality PRO technology with an exclusive database of colour reproduction samples. Even when displaying low-resolution images on a TV screen, the picture quality is automatically upscaled to 8K (4K) with HDR High Dynamic Range. There is support for X-tended Dynamic Range PRO technology, which distributes the backlight in accordance with the displayed scenes. Dynamic backlighting improves contrast and makes the picture as bright as possible, while blacks are more saturated than ever.

Sony Cognitive XR. TVs with Sony XR processor are capable of displaying a picture in 4K resolution at 120 Hz and 8K at 60 Hz. These are high-tech models operating under the control of advanced artificial intelligence. The Sony XR is one of the world's first "cognitive" processors. He processes the video and audio components of broadcasts to improve the quality of the image and sound, which creates a realistic picture of what is happening on the screen. The software algorithms of the processor process information about audio and video in a single stream. The manufacturer claims that the processor works akin to the human brain and goes beyond the capabilities of ordinary artificial intelligence algorithms.

— LG. There are three large families in LG's television image processor hierarchy: α5, α7 and α9.

First-order processors (Alpha 5) are used in low-cost brand TV panels. They cover the basic range of tasks in the manner of improving colour reproduction, scaling video up to 4K and creating virtual surround sound.

Processors of the Alpha 7 line are found on board LG's mid-range TVs with NanoCell and OLED matrices. Their advanced functionality includes automatic adjustment of picture and sound parameters in accordance with the broadcast genre, as well as automatic adjustment of brightness and tones subject to the surrounding space.

LG's flagship TVs are equipped with α9-rank processors, which rely on deep machine learning algorithms to analyze the genre of the video content being broadcast and adapt the image and sound parameters for it. Alpha 9 processors work with all applicable specifications of LG TV's High Dynamic Range technology and feature a professional sound identification system.

Note that with each subsequent edition, LG image processors increase functionality. Their generations are designated by the prefix Gen with the serial number of the generation.

LG α 7 Gen 4. 4th generation intelligent processor used in LG's midrange NanoCell and OLED TVs. It processes high-resolution 4K video broadcasts, scales images to the same format from lower frame resolutions, and has significantly increased processing power. The LG α 7 Gen 4 processor relies on special algorithms that analyze the type of video content in real time to adjust the picture and sound settings according to the broadcast genre. The tones and brightness of the picture on the screen are also automatically adjusted according to the lighting of the surrounding space. Along the way, the processor improves the sound quality of the TV — depending on the content being viewed and the location of the viewers in the room (determined using the Magic Remote).

LG α 9 Gen 4. Powerful neural processor for top LG OLED, Mini LED and NanoCell matrix of 2021 and newer models. It uses deep machine learning algorithms to analyze the genre of broadcast video content and adapt image and sound parameters to it. The processor is tough enough to scale video from 2K and 4K resolutions to ultra-format 8K with much higher levels of detail and image clarity. Another of its features is the AI Picture Pro function, which recognizes objects in the frame (faces, bodies, objects) and processes each of them separately, making images look more natural as a whole. HDR content is optimized with brightness adjustment — the processor works with all applicable High Dynamic Range technology specifications in LG TVs. The icing on the cake is a professional sound identification system that automatically adjusts the volume level in different types of content and mixes two-channel sound into surround sound (5.1.2 format).

Samsung Crystal 4K. The Samsung Crystal 4K processor is used primarily in Samsung's Crystal UHD series TVs. This category of TVs has an affordable price. These are simple models, the screen of which produces a picture in Ultra 4K resolution. The performance of the Samsung Crystal 4K processor is enough to bring the colour quality to the level of HDR. Of the technologies used, we can note the Contrast Enhancer and Dynamic Crystal Colour, thanks to which the contrast and brightness of the image are fine-tuned.

Samsung Quantum 4K. The Samsung Quantum 4K processor is used in Samsung TVs with QLED backlighting. High performance makes it possible to scale the image of Full HD to the level of 4K, and in the high dynamic range of HDR. The Samsung Quantum 4K processor features unique Quantum HDR technology, which makes the image more detailed, richer and more expressive. The processor supports Dual LED dynamic backlight technology, with which the picture acquires extreme contrast and at the same time high brightness. Also, the TVs have a special game mode Real Game Enhancer+ with support for AMD FreeSync technology.

Samsung Quantum 8K. The Samsung Quantum 8K processor has been used in Samsung QLED TVs since 2020. Models in this series are capable of reproducing 8K HDR images, and a picture of such high quality can be obtained even from a source with a resolution of 4K to Full HD. Usually, these are top-level models. TVs of this class can be used as part of a professional home theater. Deep detailing of the picture guarantees complete immersion in the video content. Artificial intelligence QLED TV is responsible for image processing.

Philips P5 Perfect Picture. The Philips P5 Perfect Picture Processor is used in Philips OLED TVs. The processing power of the processor is enough to reproduce the 4K image. In older models, an extended dynamic range of HDR colours is found. TVs with the Philips P5 Perfect Picture processor cover several cost categories at once, the low-cost segment and the average price range. A high-quality picture is displayed on the screen of such models, but, usually, it falls short of the reference Ultra 4K HDR, since this requires a more professional matrix. The P5 Perfect Picture processor is the first Philips CPU to use artificial intelligence. Philips P5 Perfect Picture supports technologies such as Dolby Vision, HDR10+, Perfect Natural Motion and Micro Dimming Pro.

Philips P5 Pro Perfect Picture. The Philips P5 Pro Perfect Picture Processor is used in Philips TVs with enhanced OLED. Models with this processor are capable of displaying an image in Ultra 4K HDR resolution. Usually, it is found in advanced class TVs. Philips P5 Pro Perfect Picture processor TVs use a machine intelligence neural network interface. Google Assistant and Amazon Alexa voice assistants are supported. The processor uses the following image and sound technologies: Dolby Vision, Dolby Atmos, HDR10+, Micro Dimming Perfect and Wide Colour Gamut.

Screen surface

The type of coating used on the TV screen.

Matte. Historically, the first type of coating for LCD screens, which is often found today. Screens with such a coating generally have average characteristics of brightness, saturation and colour reproduction quality, in terms of these indicators they are inferior to glossy counterparts. However, the matte coating has one important advantage: it has virtually no glare from ambient light. In some situations, this can be an important advantage — for example, if the TV is installed opposite the window. And for some users it is more pleasant to look at the screen without glare, albeit relatively dim.

Glossy. A coating designed to improve the brightness and colour quality of the visible image compared to matte screens. The creators have managed to achieve this goal: "glossy" screens really provide rich, vibrant colours and a brighter image. The key disadvantage of such screens is the appearance of glare from ambient light on them — this can ruin the whole viewing experience. Because of this, the classic glossy coating is practically not used today, anti-glare solutions have taken its place (see below).

Glossy (anti-glare). Modification of the glossy coating, created, as the name implies, in order to eliminate the main drawback of the classic gloss — glare from external lighting. This is not to say th...at such screens do not glare at all, but there are much less reflections on them than on ordinary glossy ones. As for the image quality, it is at least not much worse, and often even better (especially since such coatings are constantly being improved). Thanks to all this, most modern TVs of all price categories are equipped with anti-glare screens.

Frame rate

The highest frame rate supported by the TV.

Note that in this case we are talking specifically about the screen’s own frame rate, without additional image processing (see “Index of dynamic scenes”). This frequency must be no lower than the frame rate in the video being played - otherwise there may be jerks, interference and other unpleasant phenomena that degrade the quality of the picture. In addition, the higher the frame rate, the smoother and smoother the movement in the frame will look, and the better the detail of moving objects will be. However, it is worth noting here that playback speed is often limited by the properties of the content, and not by the characteristics of the screen. For example, films are often recorded at a frequency of only 30 fps, or even 24 - 25 fps, while most modern TVs support frequencies of 50 or 60 Hz. This is enough even for viewing high-quality content in HD resolutions (speeds above 60 fps in such video are extremely rare), but there are also “faster” screens on the market: 100 Hz, 120 Hz and 144 Hz. Such speeds, as a rule, indicate a fairly high class of the screen; they also often imply the use of various technologies designed to improve the quality of dynamic scenes.

Digital tuner

Types of digital tuners (receivers) provided for in the design of the TV.

Such tuners are necessary for receiving digital TV broadcasts; for normal operation, the broadcast standard must match the type of tuner (with some exceptions, see below). Note that the receivers are also available as separate devices; however, it is easier (and often cheaper) to buy a TV with a built-in tuner of the desired format. In modern TV you can find terrestrial tuners DVB-T2, cable DVB-C and satellite DVB-S and DVB-S2, here are their main features:

— DVB-T2 (terrestrial). The main modern standard for digital broadcasting. Such broadcasting has a number of advantages over traditional analogue broadcasting: it allows higher resolution and multi-channel audio transmission, with better sound and picture quality, and this quality is fully preserved until the signal weakens to a critical level. However, in some countries digital terrestrial broadcasting is just being put into operation, so it will not hurt to check the availability of DVB-T2 coverage in your area.

— DVB-C (cable). The main modern standard for digital broadcasting in cable networks. Despite the advent of the more advanced DVB-C2, it still continues to be widely used, and most likely this situation will not change for a long time.

— DVB-S (satellite). The first...generation of the digital DVB standard for satellite broadcasting. Nowadays, it is relatively rare due to the advent of a more advanced DVB-S2, which is also backwards compatible with the original DVB-S.

— DVB-S2 (satellite). The most advanced and popular of today's digital satellite broadcasting standards. Being the heir to DVB-S, has retained compatibility with it; therefore, manufacturers often limit themselves to installing only a DVB-S2 tuner on their TVs — it allows you to receive both major satellite broadcast formats.

Features

Among the features of the TV, first of all, it is worth noting its communication features, which include AirPlay 2, Wi-Fi(in particular Wi-Fi 5 and Wi-Fi 6), Miracast, Chromecast, MHL, DLNA, Bluetooth, in rare cases NFC. As a control, in addition to the classic remote control, there can be multimedia air mouse remote, voice control, voice assistant. As well as special features in the form of Ambilight from Philips. More about them:

— Airplay. TV support for AirPlay technology, usually in the AirPlay 2 version. Initially, this technology was created to broadcast multimedia content from Apple gadgets (iPhone, iPad, etc.) to external devices, including TVs. At the same time, it allows not only to play such content, but also provides many additional features — broadcasting additional information (title of the sound track, album cover), playback control from the TV remote control, etc. In AirPlay 2, in turn, the "multi-room" format was added — the ability to simultaneously broadcast several signals to compatible devices installed in differe...nt places at home (for example, a movie on a TV and an online radio programme on sound system in the kitchen). In addition, in this version, support for voice control via Siri has appeared and a number of technical issues have been improved (in particular, buffering of streamed content).

— Wi-Fi. The presence of a built-in Wi-Fi module in the TV; the supported version of this technology can also be specified in this section. Nowadays, Wi-Fi can be used both for wireless access to the Internet and local networks, as well as for direct connection with other devices (for example, broadcasting video from a smartphone/tablet). The specific application of the wireless connection may be different, depending on the functionality of the TV; in addition to Internet access, examples include DLNA (see below), receiving or transmitting video via Wi-Di or Miracast, and using a mobile gadget as a remote control. However, almost all models with this feature belong to Smart TV (see above).
As for Wi-Fi versions, the most relevant nowadays are Wi-Fi 5, Wi-Fi 6 and Wi-Fi 6E. Also note that, in addition to these Wi-Fi standards, earlier ones are usually supported — so compatibility problems does not occur.

— TV shows recording. The ability to record TV programmes viewed on the TV. In most cases, it is supposed to record to a USB flash drive or other external USB drive, but there are other options: if you have a card reader (see "Inputs"), recording to a memory card can be provided, and some advanced TVs are equipped with quite capacious own drives. But this feature can be useful in cases where you need to save the broadcast — for example, so that someone can watch it later, or to save a TV programme with a family member to your home collection. In addition, many TVs with this feature also provide a Time Shift mode: if you need to leave the room, you can “pause the broadcast” and the TV will start recording it, and upon returning, you can continue watching from the point at which it was interrupted. Note that some TVs may require the installation of additional software to record TV programmes; for such models, this function is not always indicated, although it is technically available.

— MHL support. TV support MHL interface. This interface is used in portable electronics (smartphones, tablets) to transfer high-definition video and multi-channel audio to an external screen. In fact, it is a combination of microUSB and HDMI (see below): from a portable device, the signal is output through the universal microUSB port, and the TV receives video and audio through the MHL-enabled HDMI port, while simultaneously charging the connected gadget. The MHL bandwidth is sufficient for high-definition video and multi-channel audio.

— Miracast. TV support for Miracast technology. This technology allows you to broadcast video and audio signals via Wi-Fi technology (both to the TV and from it to portable electronics), while both devices are connected directly (Wi-Fi Direct) and do not require additional equipment, and the bandwidth is sufficient for Full HD video transmission and 5.1 multi-channel audio. Some time ago, TVs used a similar WiDi technology, but nowadays it is almost ousted from the market, and most manufacturers use Miracast.

— Chromecast. Chromecast technology allows you to quickly and easily stream video and audio from your smartphone, tablet or computer to your TV. In fact, Chromecast is a network media player, because after setting up this function, you can wirelessly display the video recorded on your smartphone on your TV with just one touch.

— Bluetooth. Bluetooth technology (any version) is used for direct wireless communication between different devices. How it is used on TVs may vary, depending on the functionality of a particular model (and version of Bluetooth). So, it is almost mandatory for Bluetooth TVs to be able to transfer sound to wireless headphones or speakers. In addition, other use cases may be provided: connecting keyboards, mice and game controllers, direct file exchange with a laptop, remote control from a smartphone or other gadget, etc. These details should be clarified separately. As for specific versions, in many models these details are not specified at all — for use for the intended purpose, “just Bluetooth” is enough. However, there are exceptions, and here the following options are relevant for modern TVs:
  • Bluetooth v4.0. A version that combines traditional Bluetooth 2.1, a high-speed standard for transferring large files, and "Bluetooth Low Energy" for small amounts of information. All subsequent versions are built on these three components (with various improvements), and v 4.0 was the first where they appeared all together.
  • Bluetooth v 4.1. Improvement of version 4.0, in which compatibility with mobile devices of the 4G LTE standard has been improved — so that the LTE and Bluetooth modules do not create mutual interference while working nearby.
  • Bluetooth v4.2. Further development of version 4.0; updates that are relevant for TVs include mainly improving the reliability and noise immunity of communications.
  • Bluetooth v5.0. One of the key improvements in version 5.0 compared to previous editions of the protocol was the presence of two special “Low Energy” modes – increased range (due to reduced speed) and increased speed (due to reduced range).
  • Bluetooth v 5.1. Update of the v 5.0 version described above. In addition to general improvements in the quality and reliability of communication, this update has implemented such an interesting feature as determining the direction from which the Bluetooth signal is coming. Thanks to this, it becomes possible to determine the location of connected devices with an accuracy of up to a centimeter (for example, a remote control).
  • Bluetooth v 5.2. The next, after 5.1, is the fifth-generation Bluetooth update. The main innovations in this version are a number of security improvements, additional power optimization in LE mode, and a new audio signal format for synchronized parallel playback on multiple devices.
  • Bluetooth v 5.3. The Bluetooth v 5.3 wireless protocol was introduced at the beginning of 2022. Among the innovations, it accelerated the process of choosing the communication channel between the controller and the device, implemented the function of quickly switching between the state of operation in a small duty cycle and high-speed mode, improved the throughput and stability of the connection by reducing the susceptibility to interference. In case of unexpected interference in the Low Energy mode of operation, the procedure for selecting a communication channel for switching is now accelerated. There are no fundamental innovations in protocol 5.3, but a number of qualitative improvements are seen in it.


— NFC. TV compatible with NFC technology; the NFC itself, usually, is built into the remote control or is made as a separate tag; installing it in the TV case is not very convenient. This technology provides wireless communication over short distances, usually up to 10 cm. Theoretically, the methods of its application can be different, but specifically on TVs, it is mainly used to facilitate communication via Wi-Fi or Bluetooth: just bring an NFC-compatible gadget (for example, a smartphone ) to the TV chip — and the devices will recognize each other automatically and either connect immediately, or the user will be required to confirm the connection. Anyway, it's easier than setting up the connection manually.

— DLNA support. The TV supports DLNA — Digital Living Network Alliance. This standard was created so that various types of home and portable electronics — smartphones, tablets, media centers, computers, etc. — was possible to combine into a single network and easily exchange content within this network, regardless of the model and manufacturer of individual devices. In the case of a TV, this means that you can directly stream video from other devices, such as a smartphone, to it via the network. The network itself is built on the basis of the usual local area network, both a wired LAN interface and wireless Wi-Fi can be used to connect to it.

Ambilight. Screen backlight technology. In this case, the TV case illuminates the wall/partition located at the back, due to which a blurry halo appears around the screen contour in the colour of changing scenes. This effect visually expands the screen area, making watching TV more enjoyable. There are three types of backlighting in total: classic Ambilight (on the sides only), Ambilight Surround (on the sides and top), Ambilight Full Surround (from all sides). But manufacturers continue to work on improving the backlight. So, relatively recently, the Ambilight Spectra backlight has appeared, in which the colour matching algorithm has been significantly improved and the LEDs themselves have been optimized.

— Voice control. TV support for voice control allows you to dictate certain commands through the remote control. However, not all functions are covered by voice control and recognition accuracy may require re-entering the command. If you need a more extensive range of functions, then pay attention to the voice assistant.

— Multimedia (air mouse remote). Air mouse remotes are devices that have a gyroscope, which allows you not only to switch menu items with the “↑”, “↓” buttons, but to use the remote control as a mouse. By pointing it at the TV screen, a cursor will appear that moves in the direction of the remote control. This makes management easier and faster.

— Voice assistant. For a long time now, device control has been shifting to voice commands. For this, certain interfaces and systems are used. The most popular are Amazon Alexa and Google Assistant, as well as Samsung's own Bixby assistant. For "apple" devices, this is Apple Siri, but this technique is not presented on TVs. At the same time, unlike the voice control function, the voice assistant does not just turn on this or that function, mode, makes it louder, quieter, but allows you to perform certain operations in applications, whether it is to launch the desired clip in Youtube or display the weather in the browser.

USB file format support

File formats that the TV can play from external media (such as a USB flash drive) via a USB port. Modern televisions, usually, can work with a fairly extensive set of formats, including video, audio, pictures, and even text documents. At the same time, we note that within the same format, different encoding methods can be used, and some files may turn out to be unreadable even if they formally match in format. This is especially true for inexpensive and outdated TVs.

Inputs

The TV's connectivity is based not only on wireless technologies (described above), but also on a wired connection. In particular, video transmission can be carried out through VGA, Component, Composite, SCART connectors. Some of them also provide sound transmission, in addition to which there may be a mini-Jack (3.5 mm). and other ports for interconnection with external devices. More about them:

USB. Connector for connecting external peripheral devices. The presence of USB means at least that the TV is capable of playing content from flash drives and other external USB media. In addition, there may be other ways to use this input: recording TV programs to external media, connecting a WEB camera (see same paragraph), keyboard and mouse to use the built-in browser and other software, etc. The specific set of options depends on the functionality of the TV, it should be specified separately in each case.

Card reader. A device for working with memory cards, most often in SD format. The main use of the card reader is to play content from such cards on a TV; such an opportunity is especially convenient for viewing materials from photo and video cameras — it is in such devices that memory cards are w...idely used. There may be other ways to use this function — for example, recording from the broadcast or even exchanging files between the card and the TV's storage. It is worth bearing in mind that SD cards have several subtypes — original SD, SD HC and SD XC, and not all of them may be supported by the card reader.

— LAN. Standard connector for wired connection to computer networks (both local and the Internet). Mostly found in models with Smart TV support (including Android TV devices; see related paragraphs). A wired connection is less convenient than Wi-Fi, not as aesthetically pleasing, so manufacturers place more emphasis on a wireless connection, as a result of which the speed indicators of the LAN connector are not indicated, and in some cases may be unacceptable for 4K broadcasts.

— VGA. Analogue video input, also known as D-sub 15 pin. Initially, the VGA interface was developed for computers, but due to the emergence of more advanced standards like HDMI (see below) and technical limitations (the maximum resolution is only 1280x1024, the inability to transmit sound), it is considered obsolete and is used less and less. So it makes sense to specifically look for a TV with such a connector mainly in cases where it is planned to be used as a monitor for an outdated computer or laptop.

— Component. Video interface with 3 connectors, each of which is responsible for its part of the video signal. This separation provides high bandwidth and noise reduction, making the component input the most advanced analogue video interface available today. So, it is capable of working with HD, and in terms of image quality it significantly surpasses S-Video and composite connector, closely approaching HDMI (see below).

— Composite. Combined analogue audio/video interface, it is this connector that is usually called the A/V input. Actually, there are usually three connectors in the composite interface — separately for video and the left/right channel of stereo sound (on TVs with one speaker that do not support stereo, one of the audio connectors is missing). The image quality when working through such an input is not high, and HD formats are not supported at all; on the other hand, the composite interface is extremely widespread not only in modern, but also in outdated equipment like VHS video recorders.

— SCART. The large universal multimedia connector, the largest connector used in today's consumer-grade video equipment. Works mainly with an analogue signal, which is why it is considered obsolete; however, still not falling into disuse. One of the reasons for this "longevity" is versatility: SCART does not have its "own" signal format, this standard only describes the connector. In fact, having the appropriate cables, you can connect different types of incoming signals to such an input — composite, S-Video, etc. Moreover, it is technically possible for such a connector to work as an output (for the same signal types). However the specifications of SCART connectors in different TVs may be different, so a specific list of compatible interfaces needs to be specified separately.

— COM port (RS-232). A connector originally developed for computer technology. It is used as a control on TVs: by connecting the device to a computer, you can control TV parameters and various settings, sometimes quite specific and inaccessible when using a conventional remote control.

— Mini-Jack (3.5 mm). A connector most commonly used as an analogue audio (line) input. One of the options for using such a connector is to connect audio for a video signal transmitted via VGA, S-Video (see above) or another interface that does not support audio transmission. However, with the appropriate cable, any audio source can be connected to the 3.5 mm mini-Jack port, including a mobile device like a smartphone or a pocket player. In this case, the sound can be played both through the speakers of the TV, and on external speakers connected to it. Another option for using this input is to connect a microphone for chatting via Skype.

HDMI

The number of HDMI inputs provided in the design of the TV.

HDMI is a comprehensive digital interface that allows high-definition video and multi-channel audio to be transmitted over a single cable. It is widely used in modern HD equipment — in fact, the presence of such an output is mandatory for modern media centers, DVD players, etc. Therefore, LCD TVs in the vast majority of cases are equipped with at least one HDMI port. And the presence of several such ports allows you to simultaneously connect several signal sources and switch between them; in some models, the number of HDMI can reach 4 or even more. At the same time, some manufacturers use technologies that allow you to control devices connected to the TV via HDMI from a single remote control.

Outputs

Coaxial (S/P-DIF). An interface for transmitting audio in digital format, which allows to transmit multi-channel audio via a single cable with an RCA connector (“tulip”). In terms of resistance to interference, this standard is somewhat inferior to the optical one (see below) — this is due to the fundamental differences between these interfaces. On the other hand, electrical cable is more reliable than optical fibre and is not as sensitive to pressure and bending.

Optical. An output for transmission of a digital audio signal on a fibre optic cable; allows the transmission of multi-channel audio. Notable for its complete insensitivity to electromagnetic interference. On the other hand, fibre optic cable is quite fragile, it must be protected from bending and strong pressure.

Mini-Jack (3.5 mm) for headphones. Standard 3.5mm headphone jack. Headphones can come in handy if you need to keep quiet and you can’t use the TV speakers – for example, at a later time of the day; or vice versa, if the environment is noisy and the sound of the TV is hard to hear. Most modern "ears" use a mini-Jack plug, so this connector is the standard headphone output in TVs. And in some models, this output can also be used as a linear output — for example, to connect individual speakers, a sound recording device, etc.

— Subwoofer. A separate output for connectin...g a subwoofer to a TV is a speaker for reproducing low and ultra-low frequencies. Audio systems without subwoofers usually reproduce these frequencies quite poorly. The use of subwoofer allows you to achieve the most deep and rich sound, which is especially important when watching movies with a lot of special effects or high-quality recordings from concerts. At the same time, it is worth noting that such outputs are quite rare in TVs: it is assumed that a full-format external audio system is more suitable for a demanding listener than a separate subwoofer.

— Line. Standard analogue audio interface; usually, provides the transmission of two-channel stereo. It is used primarily to connect active speakers and other audio equipment (for example, audio receivers or power amplifiers) to TVs. It can use different types of connectors, but most often it provides either a 3.5 mm mini-Jack or a pair of RCA jacks for tulip cables. Note that it is a separate line output that is meant here; in some models, this function can be performed by a 3.5 mm headphone jack (see above), but for them the presence of a line-out is not indicated.
Sony KD-55XE8599 often compared
Sony KD-55XE8577 often compared