United Kingdom
Catalog   /   Photo   /   Digital Cameras

Comparison Olympus OM-D E-M10 III kit 14-42 vs Olympus OM-D E-M1 II body

Add to comparison
Olympus OM-D E-M10 III  kit 14-42
Olympus OM-D E-M1 II  body
Olympus OM-D E-M10 III kit 14-42Olympus OM-D E-M1 II body
Compare prices 1Compare prices 2
TOP sellers
Main
5-axis matrix stabilization. Touch screen display. Fast and tenacious autofocus. Excellent ergonomics. Wide fleet of interchangeable optics.
High performance 5-axis image stabilization. 4K video recording. Touch rotary screen. Dual slot for memory cards. Dust- and moisture-proof execution.
Camera type"mirrorless" (MILC)"mirrorless" (MILC)
DxOMark rating80
Sensor
Sensor
LiveMOS /truePIC VIII processor/
LiveMOS /truePIC VIII processor/
Sensor size
4/3" (17.3х13 mm) /17.3x13 мм/
4/3" (17.3х13 mm)
Total MP17.222
Effective MP number1620
Maximum image size4608x3456 px5184x3888 px
Light sensitivity (ISO)200-25600
200-25600 /some camera settings allow you to lower the ISO to 64/
Sensor cleaning
RAW format recording
Lens
Mount (bayonet)Micro 4/3Micro 4/3
Kit lens?
Aperturef/3.5 - f/5.6
Focal length14 - 42 mm
Optical zoom3
Manual focus
Image stabilization
with matrix shift /5 stops/
with matrix shift
Photo shooting
Number of scene programs10
HDR
White balance measuring
 /±5 (2, 3, 5, 7 frames at 1/3 EV, 2/3 EV, 1 EV)/
Exposure compensation± 5 EV, in steps of 1/2, 1/3 or 1 EV± 5 EV, in steps of 1/3, 2/3 or 1 EV
Auto bracketing
Exposure modes
auto
shutter priority
aperture priority
manual mode
auto
shutter priority
aperture priority
manual mode
Metering system
point
centre-weighted
sensor (estimated)
point
centre-weighted
sensor (estimated)
Video recording
Full HD (1080)1920x1080 pix 60 fps1920x1080 pix 60 fps
Ultra HD (4K)3840x2160 pix 30 fps
3840x2160 pix 30 fps /4096x2160 px 24 fps/
Video scene modes
/Timelapse, retro, echo, time lapse, art/
File recording formatsMPEG-4, H.264MOV( H.264), AVI (Motion JPEG)
Manual video focus
Maximum video length
 
time limit /29 min/
Connection ports
HDMI v 1.4
 
 
micro HDMI v 1.4
headphone Jack
microphone Jack
Focus
Autofocus modes
one shot
 
tracking
in face
 
one shot
AI focus
tracking
in face
by smile
Focus points121 шт121 шт
Touch focus
Viewfinder and shutter
Viewfinder
electronic /2036K pixels/
electronic /236K pixels/
Viewfinder crop0.62 x0.74 x
Frame coverage100 %100 %
Shutter speed60-1/16000 sec
60-1/8000 sec /electronic shutter up to 1/32000/
Continuous shooting8.6 fps
15 fps /electronic shutter up to 60 fps/
Shutter typeelectronic/mechanicalelectronic/mechanical
Screen
Screen size3 ''3 ''
Screen resolution1040 thousand pixels1037 thousand pixels
Touch screen
Rotary display
Memory and communications
2 card slots
Memory cards typesSD, SDHC, SDXCSD, SDHC, SDXC
Communications
Wi-Fi 4 (802.11n)
smartphone control
Wi-Fi
smartphone control
Flash
Built-in flash
Application range5.8 m
External flash connect
flash X-sync1/250 sec
Power source
Power source
battery
battery
Battery modelBLS-50BLH-1
Shots per charge330 шт440 шт
General
Charger modelBCS-5BCH-1
Materialaluminium alloyaluminium/plastic
Retrodesign
Protectiondustproof, waterproof
Dimensions (WxHxD)122х84х50 mm134х91х67 mm
Weight501 g574 g
Color
Added to E-Catalogseptember 2017september 2016

DxOMark rating

The result shown by the camera in the DxOMark ranking.

DxOMark is one of the most popular and respected resources for expert camera testing. According to the test results, the camera receives a certain number of points; The more points, the higher the final score.

Total MP

The total number of individual light sensitive dots (pixels) provided in the camera's sensor. Denoted in megapixels - millions of pixels.

The total number of MPs, as a rule, is greater than the number of megapixels from which the frame is directly built (for more details, see "Effective number of MPs"). This is due to the presence of service areas on the matrix. In general, this parameter is more of a reference than practically significant: a larger total number of MPs with the same size and effective resolution means a slightly smaller size of each pixel, and, accordingly, an increased likelihood of noise (especially at high ISO values).

Effective MP number

The number of pixels (megapixels) of the matrix directly involved in the construction of the image, in fact — the number of points from which the captured image is built. Some manufacturers, in addition to this parameter, also indicate the total number of MPs, taking into account the service areas of the matrix. However, it is the effective number of MPs that is considered the main indicator — it is this that directly affects the maximum resolution of the resulting image (see “Maximum image size”).

A megapixel is 1 million pixels. Numerous megapixels ensures high resolution of the captured photos, but is not a guarantee of high-quality images — much also depends on the size of the sensor, its light sensitivity (see the relevant glossary items), as well as hardware and software image processing tools used in the camera. Note that for small matrices, high resolution can sometimes be more of an evil than a blessing — such sensors are very prone to the appearance of noise in the image.

Maximum image size

The maximum size of photos taken by the camera in normal (non-panoramic) mode. In fact, this paragraph indicates the highest resolution of photography — in pixels vertically and horizontally, for example, 3000x4000. This indicator directly depends on the resolution of the matrix: the number of dots in the image cannot exceed the effective number of megapixels (see above). For example, for the same 3000x4000, the matrix must have an effective resolution of at least 3000*4000 = 12 million dots, that is, 12 MP.

Theoretically, the larger the size of the photo, the more detailed the image, the more small details can be conveyed on it. At the same time, the overall image quality (including the visibility of fine details) depends not only on resolution, but also on a number of other technical and software factors; see "Effective MP number" for more details.

Sensor cleaning

The presence in the camera of a special mechanism for cleaning the matrix from dust and other contaminants.

This function is found only in models with interchangeable lenses — "reflex cameras" and MILC (see "Camera type"). When replacing the lens in such cameras, the sensor turns out to be open, and the probability of its contamination is quite high; and extraneous particles on the matrix, at best, lead to the appearance of extraneous artifacts, at worst, to damage to the sensor. To avoid this, cleaning systems are provided. They usually work on the principle of ultrasound: high-frequency vibration "resets" debris from the surface of the sensor.

Note that no cleaning system is perfect — in particular, such systems are “too tough” for condensate, salt deposits and other similar contaminants. So the matrix may still need manual cleaning (ideally, in a service centre). Nevertheless, this function allows you to effectively deal with at least dust, which greatly simplifies the life of the user.

Kit lens

A lens supplied with the camera in a serial (kit) configuration. With it, the camera is ready to work literally “out of the box” - everything needed for shooting is already available, and there is no need to buy a lens separately (as is the case with the “naked body” of the body camera). The vast majority of these are optics with a universal set of medium focal lengths and a relatively low variable aperture ratio. Often, kit lenses have rather modest characteristics, and they are intended mainly for novice users, learning the basics of photography and simple everyday shooting. But there are also other options for whale lenses - top camera models can be equipped with fairly advanced optics. It wouldn’t hurt to clarify this point separately. We also note that the same camera can be supplied with different options for complete optics.

Aperture

Aperture of the lens installed in the camera or supplied with it in the kit (for models with detachable optics).

In a simplified way, this parameter can be described as the ability of the lens to transmit light - in other words, how much the light flux weakens when passing through the optics. It is believed that two main indicators affect the characteristics of light transmission: the size of the relative opening of the lens and its focal length. Aperture is the ratio of the first indicator to the second; in this case, the size of the active hole is taken as one and is generally omitted when recording, as a result, such a recording looks, for example, like this: f / 2.0. Accordingly, the larger the number after the fraction sign, the lower the aperture ratio, the less light the lens transmits.

Zoom lenses (zoom lenses), as a rule, have different aperture values for different focal lengths. For such optics, two values of this parameter are indicated in the characteristics, for the minimum and maximum focal lengths, for example, f / 2.8–4.5. There are also vario lenses that maintain a constant aperture over the entire range of focal lengths, but they are much more expensive than analogs with variable aperture.

The high light transmission of the lens is important if the camera is planned to be used for shooting in low light conditions or for shooting fast moving objects: high-aperture optics allow you to shoot at low sensor sensitivity (which...reduces the likelihood of noise) and at low shutter speeds (at which moving objects are less blurry) . This parameter also determines the depth of field of the imaged space: the higher the aperture ratio, the smaller the depth of field. Therefore, for shooting with artistic background blur (“bokeh”), it is recommended to use fast lenses.

Focal length

Focal length of the camera lens.

Focal length is such a distance between the camera matrix and the optical center of the lens, focused at infinity, at which a clear and sharp image is obtained on the matrix. For models with interchangeable lenses ( mirrorless cameras and MILC, see “Camera Type”), this parameter is indicated if the camera is supplied with a lens (“kit”); Let us recall that, if desired, optics with other characteristics can be installed on such a camera.

The longer the focal length, the smaller the viewing angle of the lens, the higher the degree of approximation and the larger the objects visible in the frame. Therefore, this parameter is one of the key for any lens and largely determines its application (specific examples are given below).

Most often in modern digital cameras, lenses with a variable focal length are used: such lenses are able to zoom in and out of the image (for more details, see "Optical Zoom"). For "DSLRs" and MILC, specialized optics with a constant focal length (fixed lenses) are produced. But in digital compacts, "fixes" are used extremely rarely, usually such a lens is a sign of a high-end model with specific characteristics.

It should be borne in mind that the actual focal length of the lens is usually given in the characteristics of the camera. And the viewing angles and the general purpose of the optics are determined not only by this parameter, but also...by the size of the matrix with which the optics are used. The dependence looks like this: at the same viewing angles, a lens for a larger matrix will have a longer focal length than a lens for a small sensor. Accordingly, only cameras with the same sensor size can be directly compared with each other in terms of lens focal length. However, to facilitate comparisons in the characteristics, the so-called. EGF - focal length in 35 mm equivalent: this is the focal length that a lens for a full frame matrix having the same viewing angles would have. You can compare by EGF lenses for any matrix size. There are formulas that allow you to independently calculate the equivalent of 35 mm, they can be found in special sources.

If we talk about a specific specialization, then the EGF up to 18 mm corresponds to ultra-wide-angle fisheye lenses. Wide-angle is considered "fixed" optics with EGF up to 28 mm, as well as vario lenses with a minimum EGF up to 35 mm. Values up to 60mm correspond to "general purpose" optics, 50 - 135mm are considered optimal for shooting portraits, and higher focal lengths are found in telephoto lenses. More detailed information about the specifics of various focal lengths can be found in special sources.

Optical zoom

The magnification factor provided by the camera by using the capabilities of the lens (namely, by changing its focal length). In models with interchangeable lenses (see “Camera type”), indicated for the complete lens, if available.

Note that in this case the magnification is indicated not relative to the image visible to the naked eye, but relative to the image produced by the lens at minimum magnification. For example, if the characteristics indicate an optical zoom of 3x, this means that at the maximum magnification, objects in the frame will be three times larger than at the minimum.

The degree of optical zoom is directly related to the range of focal lengths (see above). You can determine this degree by dividing the maximum focal length of the lens by the minimum, for example 360mm / 36mm=10x magnification.

To date, optical zoom provides the best "close" image quality and is considered to be superior to digital zoom (see below). This is due to the fact that with this format of work, the entire area of \u200b\u200bthe matrix is constantly involved, which allows you to fully use its capabilities. Therefore, even among low-cost models, devices without optical zoom are very rare.
Olympus OM-D E-M10 III often compared