United Kingdom
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison TP-LINK RE200 vs TP-LINK TL-WA850RE

Add to comparison
TP-LINK RE200
TP-LINK TL-WA850RE
TP-LINK RE200TP-LINK TL-WA850RE
Compare prices 14Compare prices 22
TOP sellers
Main
Dual mode operation. "Fast" mode of operation. LAN port.
LAN port. Informative indicator ring.
Product type
wi-Fi booster /repeater/
wi-Fi booster
Data input (WAN-port)
Ethernet (RJ45)
Wi-Fi
Ethernet (RJ45)
Wi-Fi
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
 
Frequency band
2.4GHz
5 GHz
2.4GHz
 
Operating rangesdual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz300 Mbps
Wireless speed 5 GHz433 Mbps
Connection and LAN
LAN
1 port
100 Mbps
1 port
100 Mbps
Antenna and transmitter
Number of antennas32
Antenna typeinternalinternal
2.4 GHz antennas22
5 GHz antennas1
Transmitter power20 dBm
Functions
Features
bridge mode
repeater
 
repeater
Security
Safety standards
WPA
WEP
WPA2
 
WPA
WEP
WPA2
802.1x
General
Dimensions110x66x75 mm110x66x75 mm
Color
Added to E-Catalogfebruary 2016august 2013

Wi-Fi standards

Wi-Fi standards supported by the equipment. Nowadays, in addition to modern standards Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax)(its variation Wi-Fi 6E), Wi-Fi 7 (802.11be) and WiGig (802.11ad), you can meet also support for earlier versions — Wi-Fi 3 (802.11g) and even Wi-Fi 1 (802.11b). Here is a more detailed description of each of these versions:

— Wi-Fi 3 (802.11g). An outdated standard, like Wi-Fi 1 (802.11b), which has sunk into oblivion. It was widely used before the advent of Wi-Fi 4, nowadays it is used mainly as an addition to newer versions — in particular, in order to ensure compatibility with outdated and low-cost equipment. Operates at a frequency of 2.4 GHz, the maximum data transfer rate is 54 Mbps.

— Wi-Fi 4 (802.11n). The first of the common standards that supports the frequency of 5 GHz; can operate in this range or in the classic 2.4 GHz. It is worth emphasizing that some models of Wi-Fi equipment for this standard use only 5 GHz, which is why they are incompatible with earlier versions of Wi-Fi. The maximum speed for Wi-Fi 4 is 600 Mbps; in modern wireless devices, this standard is very popular, only recently it began to be squeezed into this position by Wi-Fi 5.

— Wi-Fi 5...(802.11ac). The successor to Wi-Fi 4, which finally moved to the 5 GHz band, which had a positive effect on the reliability of the connection and data transfer rate: it is up to 1.69 Gbps per antenna and up to 6.77 Gbps in general. In addition, this is the first version to fully implement Beamforming technology (for more details, see "Functions and Capabilities").

— Wi-Fi 6, Wi-Fi 6E (802.11ax). The development of Wi-Fi 5, which introduced both an increase in speed to 10 Gbps, and a number of important improvements in the format of work. One of the most important innovations is the use of an extensive frequency range — from 1 to 7 GHz; this, in particular, allows you to automatically select the least loaded frequency band, which has a positive effect on the speed and reliability of the connection. At the same time, Wi-Fi 6 devices are capable of operating at classic frequencies of 2.4 GHz and 5 GHz, and a modification of the Wi-Fi 6E standard is capable of operating at frequencies from 5.9 to 7 GHz, it is generally accepted that devices with Wi-Fi 6E support operate on frequency of 6 GHz, while there is full compatibility with earlier standards. In addition, some improvements were introduced in this version regarding the simultaneous operation of several devices on one channel, in particular, we are talking about OFDMA technology. Thanks to this, Wi-Fi 6 gives the smallest of modern standards a drop in speed when the air is loaded, and the modification of Wi-Fi 6E operating at a frequency of 6 GHz has the least amount of interference.

— Wi-Fi 7 (802.11be). This Wi-Fi standard began to be implemented in 2023. Thanks to the use of 4096-QAM modulation, a maximum theoretical data rate of up to 46 Gb / s can be squeezed out of it. Wi-Fi 7 supports three frequency bands: 2.4 GHz, 5 GHz and 6 GHz. The maximum bandwidth in the standard has been increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit overnight. Among the interesting innovations in Wi-Fi 7, the development of MLO (Multi-Link Operation) is noted - with its help, connected devices exchange data using several channels and frequency bands simultaneously, which is especially important for VR and online games. The Multiple Resource Unit technology is designed to minimize communication delays when there are many connected client devices. The new 16x16 MIMO protocol is also aimed at increasing throughput with a large number of simultaneous connections, doubling the number of spatial streams compared to the previous Wi-Fi 6 standard.

WiGig (802.11ad). Wi-Fi standard using an operating frequency of 60 GHz; data transfer rates can be up to 10 Gbps (depending on the specific version of WiGig). The 60 GHz channel is much less loaded than the more popular 2.4 GHz and 5 GHz, which has a positive effect on the reliability of data transmission and reduces latency; the latter is especially important in games and some other special tasks. On the other hand, the increase in frequency has significantly reduced the connection range (for more details, see "Frequency range"), so that in fact this standard is only suitable for communication within the same room.

Note that in fact, the data transfer rate is usually much lower than the theoretical maximum — especially when several Wi-Fi devices operate on the same channel. Also note that different standards are backwards compatible with each other (with a speed limit according to the slower one) provided that the frequencies match: for example, 802.11ac can work with 802.11n, but not with 802.11g.

Frequency band

Standard Wi-Fi frequency bands supported by the device.

This parameter is directly related to the Wi-Fi standards (see above) that the equipment complies with. At the same time, there are standards that cover several bands at once (such as Wi-Fi 4 and Wi-Fi 6), and not every device compatible with them supports all these bands at once; so in such cases this point should be clarified separately. In addition, the frequencies commonly used nowadays have common features, here they are:

— 2.4 GHz. Classic range: used in the earliest Wi-Fi standards, and supported by many modern versions. Therefore, quite a lot of Wi-Fi equipment still works only at 2.4 GHz(although exceptions are increasingly common). The main advantages of such equipment are simplicity, low cost, and compatibility even with frankly outdated wireless devices. On the other hand, the 2.4 GHz band is extremely busy: in addition to numerous Wi-Fi devices, it is also used by Bluetooth modules and some other types of electronics. This may degrade the quality and speed of the connection.

— 5 GHz. A band introduced to overcome the shortcomings of 2.4 GHz — in particular, to offload communication channels and separate Wi-Fi from other wireless technologies. In addition, increasing the frequency allowed to increase the communication speed. 5 GHz is used as one of the operating frequencies in the Wi-Fi 4 and Wi-Fi 6 standards (see above) and as the only one...in Wi-Fi 5. So you can find devices on the market that operate only at 5 GHz, but more widespread received equipment with multiple bands, where this frequency is only one of the supported.

— 6 GHz. An unloaded frequency introduced into use since the Wi-Fi 6E generation. The new range provides the ability to simultaneously operate numerous client devices at high speed with a minimum amount of interference and delays in signal transmission. At the moment, this is the freest, widest and fastest Wi-Fi range. However, in some regions, the 6 GHz frequency remains unavailable due to the occupancy of the band by means of military, fixed or radio relay wireless communications.

— 60 GHz. Range implemented in the WiGig standard; today it is used only in it, and as the only one. A significant increase in frequency compared to the more common 2.4 GHz and 5 GHz options has a positive effect on the quality of communication. So, with the same theoretical maximum as that of Wi-Fi 6 (10 Gbps), the WiGig standard gives a higher actual data exchange rate, as well as fewer delays and lags; this is especially important in games and some specific tasks. The downside of these advantages is a small communication range: even when using Beamforming (see "Functions and Capabilities"), it does not exceed 10 m in open space, and an obstacle like a wall can become insurmountable for a 60 GHz channel. Therefore, in Wi-Fi equipment, this frequency is found mainly among rather specific devices — access points (including directional ones), which are designed to connect individual network segments in bridge mode (see ibid.). It is this mode of use that is one of the most optimal, given the properties of this range. However, 60 GHz support is also increasingly found in consumer gadgets (smartphones, laptops), so routers are also being released for this frequency.

— Natural frequency. In rare cases, the operation of Wi-Fi equipment is possible at natural frequencies that do not fall under the standard generally accepted values. Such devices are mainly used to build point-to-point and point-to-multipoint radio bridges. Their advantages include low frequency noise from standard Wi-Fi networks, and, as a result, increased communication range. It is worth noting that it is impossible to connect directly to such devices from a laptop or smartphone. It is also necessary to take into account the legislative aspect, since in each country the use of frequencies is regulated differently.

Operating ranges

The number of wireless bands and channels supported by the router. Specified only for models that work with more than one range.

Dual-band (2.4 GHz and 5 GHz). Devices that simultaneously support two popular communication bands — 2.4 GHz and 5 GHz — in the "one communication channel per band" format. This ensures compatibility with most Wi-Fi standards (see above), and in some cases also has a positive effect on the quality of communication. For example, a Wi-Fi adapter (see "Device Type") with this feature may provide the ability to evaluate the load on both bands and automatically select the less loaded one.

Three-channel (2.4 GHz and 5 GHz in 2 channels). An improved version of the dual-band operation format: in the 5 GHz band, communication is carried out on two channels. This allows, for example, to “raise” three wireless connection channels on one router at once (three visible networks in the list of wireless networks) and achieve even higher throughput. The advantages of this format are especially noticeable when the router works simultaneously with several wireless devices.

Tri-band (2.4 GHz, 5 GHz, 60 GHz). The most "omnivorous" type of modern Wi-Fi equipment, compatible with all popular standards — from the outdated 802.11 b / g to the relatively new 802.11 ad. Also, the abundance of ranges contributes to an increase in spee...d, especially when working with multi-range devices.

Wireless speed 2.4 GHz

The maximum speed provided by the device when communicating wirelessly in the 2.4 GHz band.

This range is used in most modern Wi-Fi standards (see above) - as one of the available or even the only one. The theoretical maximum for it is 600 Mbit. In reality, Wi-Fi at a frequency of 2.4 GHz is used by a large number of client devices, from which congestion of data transmission channels emerges. Also, the number of antennas affects the speed performance of the equipment. It is possible to achieve the speed declared in the specification only in an ideal situation. In practice, it can be noticeably smaller (often by several times), especially with an abundance of wireless technology simultaneously connected to the equipment. The maximum speed at 2.4 GHz is specified in the characteristics of specific models to understand the real capabilities of Wi-Fi equipment. As for the numbers, according to the capabilities in the 2.4 GHz band, modern equipment is conditionally divided into models with speeds up to 500 Mbit inclusive and over 500 Mbit.

Wireless speed 5 GHz

The maximum speed supported by the device when communicating wirelessly in the 5 GHz band.

This range is used in Wi-Fi 4, Wi-Fi 6 and Wi-Fi 6E as one of the available bands, in Wi-Fi 5 as the only one (see "Wi-Fi Standards"). The maximum speed is specified in the specifications in order to indicate the real capabilities of specific equipment - they can be noticeably more modest than the general capabilities of the standard. Also, in fact, it all depends on the generation of Wi-Fi. For example, devices with Wi-Fi 5 support can theoretically deliver up to 6928 Mbit (using eight antennas), with Wi-Fi 6 support up to 9607 Mbit (using the same eight spatial streams). The maximum possible communication speed is achieved under certain conditions, and not every model of Wi-Fi equipment fully satisfies them. Specific figures are conditionally divided into several groups: the value up to 500 Mbit is rather modest, many devices support speeds in the range of 500 - 1000 Mbit, indicators of 1 - 2 Gbps can be attributed to the average, and the most advanced models in class provide a data exchange rate of over 2 Gbps.

Number of antennas

The total number of antennas (of all types — see below) provided in the design of the device.

In modern Wi-Fi equipment, this indicator can be different: in addition to the simplest devices with 1 antenna, there are models where this number is 2, 3, 4 and even more. The point of using multiple antennas is twofold. Firstly, if there are several external devices per antenna, they have to share the bandwidth among themselves, and the actual communication speed for each subscriber drops accordingly. Secondly, such a design may also be required when communicating with one external device — to work with MU-MIMO technology (see below), which allows you to fully realize the capabilities of modern Wi-Fi standards.

Anyway, more antennas, usually, means a more advanced and functional device. On the other hand, this parameter significantly affects the cost; so specifically looking for equipment with numerous antennas makes sense mainly when the speed and stability of communication are critical.

Note that antennas intended for mobile communications may also be considered in this clause. So when choosing a model with support for mobile networks, it's ok to clarify this point.

5 GHz antennas

The total number of antennas in the router that are responsible for communication in the 5 GHz band. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

Transmitter power

Rated power of the Wi-Fi transmitter used in the device. If multiple bands are supported (see “Ranges of operation”) the power for different frequencies may be different, for such cases the maximum value is indicated here.

The total transmitting power provided by the device directly depends on this parameter. This power can be calculated by adding the transmitter power and the antenna gain (see above): for example, a 20 dBm transmitter coupled with a 5 dBi antenna results in a total power of 25 dBm (in the main antenna coverage area). For simple domestic use (for example, buying a router in a small apartment), such details are not required, but in the professional field it often becomes necessary to use wireless devices of a strictly defined power. Detailed recommendations on this matter for different situations can be found in special sources, but here we note that the total value of 26 dBm or more allows the device to be classified as equipment with a powerful transmitter. At the same time, such capabilities are not always required in fact: excessive power can create a lot of interference both for surrounding devices and for the transmitter itself (especially in urban and other similar conditions), as well as degrade the quality of the connection with low-power electronics. And for effective communication over a long distance, both the equipment itself and external devices must have the appropriate power (which is far from alway...s achievable). So, when choosing, you should not chase the maximum number of decibels, but take into account the recommendations for a particular case; in addition, a Wi-Fi amplifier or MESH system often turns out to be a good alternative to a powerful transmitter.

Features

The main functions and capabilities implemented in the device.

This category mainly includes the most key functions — namely load balancing (Dual WAN), channel reservation, Link Aggregation, Bluetooth(various versions, including Bluetooth v 5), voice assistant, NAT, MESH modes, bridge, repeater, Beamforming function , firewall (Firewall) and CLI (Telnet). Here is a more detailed description of each of these items:

— Dual WAN. Possibility of simultaneous connection to two external networks. Most often used for simultaneous work with two Internet connections (although other options are possible); at the same time, there are two main modes of operation with such connections — redundancy (Failover / Failback) and balancing (Load Balance). So, in backup mode, the device constantly uses the main channel to connect to the Internet, and in case of failures on this channel, it automatically switches to a fallback option. In balancing mode, both channels are used simultaneously, while the load between them is distributed either automatically (depending on the traff...ic consumption of a particular device) or manually (clearly specified in the settings for specific devices). This allows, for example, to separate the channel for online games from the rest of the connection, minimizing lags and increasing efficiency.

— Link Aggregation. A function that allows you to combine several parallel physical communication channels into one logical one — to increase the speed and reliability of the connection. Simply put, with Link Aggregation, a device can be connected to another device not with one cable, but with two or even more at once. The increase in speed in this case occurs due to the summation of the throughput of all physical channels; however, the total speed may be less than the sum of the speeds — on the other hand, combining several relatively slow connectors is often cheaper than using equipment with a more advanced single interface. And the increase in reliability is carried out, firstly, by distributing the total load over individual physical channels, and secondly, by means of "hot" redundancy: the failure of one port or cable can reduce the speed, but does not lead to a complete disconnection, and when the channel is restored, the channel is switched on automatically.

— Bluetooth. The device supports Bluetooth wireless technology. The meaning of this function will depend on the format of the equipment operation (see "Device type"). For example, adapters with this capability allow you to supplement your PC not only with Wi-Fi, but also with Bluetooth support — thanks to this, you can get by with one adapter instead of two. And in routers and access points, this feature allows external devices to access the Internet (or local area network) over a Bluetooth connection instead of Wi-Fi. This format of work allows you to unload the Wi-Fi channel and reduce the power consumption of connected devices; this is especially important for smart home components and other IoT devices, some routers/access points expressly state that Bluetooth is intended mainly for such electronics. Other ways of using this technology, more specific, may be envisaged; however, this is rare.

— Voice assistant. Device support for a particular voice assistant. The most common options are (individually or together):
  • Amazon Alexa
  • Google Assistant
The specific functionality of these assistants can be clarified from special sources (especially since it is constantly being optimized and expanded). Here we note that in the case of Wi-Fi equipment, we are usually not talking about an assistant built into the device itself, but about improved compatibility with smartphones and other gadgets that have the corresponding assistant installed. Such functionality can be especially useful given that modern voice assistants are also used to control smart home components. Communication with such control is often carried out just through a home router or other similar equipment, and the support of such equipment for voice assistants greatly simplifies setup and expands the capabilities of the entire system.

— NAT (Network Address Translation). A function that allows Wi-Fi equipment, when working with an external network (for example, the Internet), to replace the IP addresses of all computers and other devices connected to this equipment with one common IP address. In other words, a network with such a router is seen "from the outside" as one device, with one common IP. The most popular use of NAT is to connect several subscribers to the Internet (for example, all computers and gadgets within a home or office) through one provider account. At the same time, the number of such subscribers within the network is limited only by the capabilities of the router and can be freely changed; this will not affect access to the World Wide Web (whereas without using NAT, one would have to organize a separate account for each device). NAT support is a mandatory feature for routers (see "Device type").

— Bridge mode. Possibility of operation of the equipment in the bridge mode. This mode allows you to wirelessly connect individual network segments to each other — for example, to combine two floors if it is difficult to lay a cable between them. However, communication over longer distances is also possible — in some directional access points (see "Device type"), created mainly for just such an application, the range can exceed 20 km. Actually, this mode supports most access points (both directional and conventional), but it is also popular in other types of equipment, in particular, routers.
Note that to work in bridge mode, it is best to use the same type of device — this guarantees high-quality communication in both directions. It is also worth mentioning that in addition to the two-way point-to-point mode, there is also equipment with support for multi-way bridges (“point-to-multipoint”); the availability of such a possibility should be clarified separately.

— Repeater mode. An operating mode in which the equipment only repeats the Wi-Fi signal from another device, playing the role of a repeater. The main function of this function is to expand Wi-Fi networks, providing access where the main device (for example, a router) does not reach. A classic example of repeaters is Wi-Fi amplifiers (see "Device type"), they have this mode by definition; however, it is also found in other types of Wi-Fi equipment. The exception is MESH systems that have similar specifics, but differ in the format of work. See below for more information about this format, but here we note that networks with repeaters are in many ways inferior to MESH in terms of practical capabilities. Firstly, the signals from the main equipment and from the repeater are seen as separate Wi-Fi networks, and when moving between them, subscriber devices must reconnect; this can happen automatically, but disconnections and network changes still cause inconvenience. Secondly, working through a repeater significantly reduces the speed of Wi-Fi. Thirdly, the repeater operates according to a strictly fixed, pre-established routing scheme. On the other hand, access points with a repeater function are much cheaper than MESH nodes, and the mentioned drawbacks are far from always critical.

— MESH mode. Ability to operate the device as a MESH network node. By definition, all MESH systems have this feature, but it can be provided in other types of equipment. A detailed description of networks of this type is given in the paragraph “Device type — MESH system”. Here we will briefly describe their features and the difference between this mode and the repeater mode (see above), which has a largely similar purpose.
MESH technology allows you to create a single wireless network using many separate nodes (access points) connected to each other via Wi-Fi. In this case, the so-called seamless mode of operation is implemented: the entire network is seen as a single whole, switching between access points, if necessary, occurs automatically, in such cases the connection is not broken and the user does not notice the transition to another network node at all. This is one of the key differences from using repeaters. Another difference is dynamic routing: MESH network nodes automatically determine the optimal signal traversal mode. Due to this, as well as due to some other features of this technology, the presence of "intermediaries" on the signal path practically does not affect the communication speed (unlike the same repeaters). The main disadvantage of equipment with this function can be called a relatively high cost.

— Beamforming. A technology that allows you to amplify the Wi-Fi signal in the direction where the receiving device is located (instead of broadcasting this signal in all directions or in a wide sector, as is the case in normal mode). Narrowing the radiation pattern allows you to send more power towards the receiver, thus increasing the range and communication efficiency; while the position of the receiving device is determined automatically, the user does not need to deal with additional settings. And many models of Wi-Fi equipment are capable of amplifying the signal in several directions at once (usually, several antennas are provided for this). At the same time, subscriber devices do not have to support Beamforming — communication improvement is noticeable even with the one-way use of this technology (although not as obvious as with the two-way one).
Also note that the unified Beamforming standards were officially implemented as part of the Wi-Fi 5 specification. However “beamforming” was also used in earlier versions of Wi-Fi, however, different manufacturers used different methods for implementing Beamforming, incompatible with each other. So these days, this feature is almost never found outside of Wi-Fi 5 compatible equipment.

— Firewall. A feature that allows a Wi-Fi device to control traffic passing through it. In fact, the Firewall is a set of software filters: these filters compare data packets with the specified parameters and decide whether or not to pass traffic. In this case, the processing can be carried out according to two rules: “everything that is not expressly prohibited is allowed”, or vice versa, “everything that is not expressly permitted is prohibited”. The main function of a firewall is to protect the network (or individual network segments) from unauthorized access and various attacks. In addition, this function can be used to control user activity — for example, prohibitions on access to certain Internet sites. Note that a firewall can also be implemented at the level of individual devices, but using it on a router allows you to secure the entire network at once.

CLI (Telnet). Ability to control the device via Telnet protocol. This is one of the protocols used today to remotely control network equipment; while Telnet, unlike another popular HTTP standard, does not have a graphical interface and uses only the command line. Such access is used mainly for service purposes — for debugging and changing settings in other text-based protocols (HTTP on web pages, SMTP and POP3 on mail servers, etc.); Telnet requires specialized knowledge.
TP-LINK RE200 often compared
TP-LINK TL-WA850RE often compared