Dark mode
United Kingdom
Catalog   /   Camping & Fishing   /   Fishing   /   Fish Finders

Comparison Humminbird PiranhaMAX 197c vs Humminbird PiranhaMAX 197c DI

Add to comparison
Humminbird PiranhaMAX 197c
Humminbird PiranhaMAX 197c DI
Humminbird PiranhaMAX 197cHumminbird PiranhaMAX 197c DI
from $269.00
Outdated Product
Expecting restock
TOP sellers
Typefish finderfish finder
Specs
Scan depth183 m200 m
Number of beams of radiation22
Number of frequencies22
Radiation frequency200/455 kHz200/455 kHz
Total radiation angle44 °118 °
Emitter power300 W300 W
Bottom scan
Display specs
Display
3.5 "
320x240 px
colour
backlight
3.5 "
320x240 px
colour
backlight
Features
Functions
Sound alarm
 
 
Auto-change depth scale
Bottom density determination
Water temperature indicator
 
Sound alarm
Determination of the distance to the fish
Indication of symbols in the form of fish
Auto-change depth scale
Bottom density determination
Water temperature indicator
Distance display
General
Ice fishing sensor
Key backlight
Dust and water protection
Power source10 - 20 V10 - 20 V
Dimensions110x155x80 mm110x155x80 mm
Added to E-Catalogoctober 2016january 2016

Scan depth

the maximum depth at which the sonar locator (see "Type") is able to operate effectively — in other words, how deep underwater the device is able to "see".

It is worth choosing an echo sounder according to this parameter, taking into account the actual depths at which it is planned to be used. Of course, this does not place a certain margin, but within reasonable limits (15-20%, less). For example, it hardly makes sense to specially take a model with a scanning depth of 200 m for a lake with pits of 30-40 m — such devices are expensive, while there will simply be nowhere to realize their full potential, and a powerful signal can also scare away the fish. But for marine or oceanic applications, a depth of a kilometer or more may be required; the most advanced echo sounders are quite capable of providing it.

Total radiation angle

The angle covered during operation by the transducer of the echo sounder (or an instrument with such a function, see "Type").

Technically, the wider the angle, the better the echo sounder is suitable for finding fish and other underwater objects, because. a large coverage area reduces the likelihood of missing prey. On the other hand, to accurately determine the depth, the beam must be as narrow as possible. This is due to the fact that the depth is determined by the maximum protruding point that fell under the beam; thus, if the size of the hole at the bottom is smaller than the spot from the beam, the device simply will not notice this hole. The smaller the angle (and, accordingly, the projection of the beam onto the bottom) — the less likely this phenomenon is.

However, it should be taken into account that all of the above is unambiguously true only for single-beam echo sounders (see "Number of radiation beams"). But multibeam models, usually, combine beams of different widths, thus compensating for the shortcomings of narrow and wide angles. In them, the total radiation angle describes only the dimensions of the space covered by the device.

Bottom scan

Echosounder support for special bottom scanning technologies.

"Viewing" the space under the bottom of the boat is a classic sonar mode and is supported by all models by definition. However, in normal mode, the sound beam propagates in the form of a cone, and the area of the bottom that falls under the beam has the shape of a circle. This degrades the accuracy and does not allow you to achieve a detailed image. Thus, many echo sounder manufacturers have developed special technologies to improve the performance of the instrument; Lowrance has DSI, Hummingbird has DI, Garmin has DownVü. The nuances of these technologies may differ, but the basic principle of operation is the same: the echo sounder beam narrows and goes not in a cone, but in a strip. Due to this, the resolution of the device is significantly increased; at shallow depths, such an echo sounder can “draw” even individual stalks of algae, making it possible to distinguish underwater thickets from schools of fish. Some models combine a narrow beam with a classic cone to further expand detection capabilities. However, such devices are expensive.

Functions

3D maps. Support for maps rendered using 3D graphics. This provides additional visibility in the work: the relief on the screen can be seen not in the form of conditional lines and colour spots, but in the form of protrusions and depressions, the shape of which most closely matches the real shape of the surface. In this case, the three-dimensional image can be supplemented with colour and/or numerical indication to clarify additional data (for example, specific depth values). This feature is typical for high-end models with the chartplotter function (see "Type").

— Sound alarm. The presence of an audible alarm in the design of the device. The types of alarms and their triggering situations can be different: fish detection, critical depth reduction (see “Shoal/Shoal” below), reaching a checkpoint, man overboard(see below), etc. However, anyway, this type of notification is more reliable than graphic indication on the screen — the user does not have to look at the device to hear the sound. This greatly reduces the risk of missing an important message.

Determining the distance to the fish. Ability to determine the distance to the fish detected by the echo sounder. Usually, we are talking about the distance in depth, and the indication itself can be carried out in different ways: in some models, fish marks are displaye...d opposite the depth scale, in others, a specific value can be given for each mark separately.

Indication of symbols in the form of fish. The ability to display on the screen a signal from a fish detected by an echo sounder in the form of, in fact, “fish” icons. This option is better suited for non-professional users than standard icons in the form of arcs of various shapes: working with arcs requires some practical knowledge to distinguish fish from other signal sources, and in the case of “fish”, the device itself solves this task for the user. Of course, no such system is perfect, and therefore false positives are not ruled out; on the other hand, recognition technologies are constantly improving. Many echo sounders with this function even have a gradation according to the size of prey — large, medium, small.

— Indication of fish in real time. In devices with this function, fish signals are displayed on the screen when a fish enters the echo sounder beam — and disappear when it leaves the beam. This allows you to track the movements of potential prey as quickly as possible and evaluate the prospects of a particular location — while models without real-time indication display marks constantly, upon detection of fish, and make it difficult to assess its movements.

— Fast screen refresh. The refresh rate of the echo sounder screen determines how evenly the relief “visible” by the device is drawn on this screen. This parameter is important when moving at high speed: if the screen is updated slowly, there is a high probability of the appearance of "steps" with sharp drops — due to the fact that the device did not have time to process and display data on the bottom section passed. By “fast” update is meant a mode that allows you to comfortably use the echo sounder at high speed; for different manufacturers, the specific values \u200b\u200bof this speed may vary, however, usually, we are talking about at least 30 – 40 km/h, developed by powerful motor boats.

— Shallow water/shallow. This function provides an indication of a critical decrease in depth, fraught with grounding with all the associated unpleasant consequences. The depth at which the alarm is triggered can most often be set at the request of the user.

— Automatic change of depth scale. Automatic change of scale of the image on the screen depending on the depth "seen" by the echo sounder. This function adjusts the screen of the device so that the entire scanned volume of water from the surface to the bottom is completely visible on it, and it is not necessary to move the image up and down to assess the situation. For example, at depths of 35-40 m, a model with auto-zoom can use a 50-metre scale, and when reaching greater depths, switch to 80- or 100-metre, at smaller depths, to 20-metre, etc. At the same time, automatic adjustment "makes life easier" for the user, eliminating the need to adjust the scale manually.

— Displayed depth range. The ability to manually set the device to a specific depth range shown on the display — so that the space above and below this range will be outside the screen. This function can be useful, for example, to search for fish walking in a certain depth range; while limiting the range allows you to get an image on a larger scale than when viewing the entire space from the surface to the bottom.

— Determination of bottom density. The ability to use an echo sounder to determine the density of the bottom surface. A device with this function allows you to determine what is under the vessel — stone, sand or soft silt; this information may be useful when catching some types of fish. In addition, bottom density data is useful when searching for underwater objects — for example, sunken ships are often distinguished by "hard" spots on a soft surface.

— Indication of water temperature. Possibility to display the water temperature on the device screen. The specific features of such an indication can be different: some models show only data on the water in direct contact with the sensor (that is, in fact, the temperature on the surface), others are also able to display data on the thermocline (temperature jump layer).

— Indication of speed. The ability to display the speed of movement on the screen of the device. This feature provides additional information and can be useful even on boats equipped with their own speedometers — getting speed data directly on the sonar / chartplotter screen is often more convenient than being distracted by a separate device. This data can come from different sources — for example, from a GPS module or from a specialized sensor (log).

— Display of the distance traveled. The ability to display the distance traveled on the screen of the device. Features of this function may vary depending on the model: in the simplest devices only the total distance traveled is shown, more advanced ones (usually with a chartplotter function, see "Type") can also draw the route on the map.

— Function "man overboard". As the name suggests, this feature facilitates rescue operations in the event of a person falling overboard. The specific functionality associated with this may vary in different models, but usually there is at least the ability to quickly fix the scene in the device and switch it to the navigation mode to this point. And in more advanced models, DSC maritime radio communications may also be provided, as well as the reception and processing of similar signals from other ships.

Ice fishing sensor

The presence of a sensor for winter fishing in the scope of delivery of the device with the function of an echo sounder (see "Type").

This feature allows the device to be used on ice-covered water bodies. Usually, the sensor itself is made in the form of a float and is designed to be placed directly in the hole. At the same time, some models are also able to “see” directly through the ice to some extent, but this function is usually auxiliary and is intended more for a general assessment of the depth, and not for a detailed display of the situation; and the working depth during such work is less than the regular one. There are two things that are common to all winter sensors: the absence of mounts found in conventional sensors (on the bottom of the boat, transom, etc.), as well as increased resistance to low temperatures.
Humminbird PiranhaMAX 197c often compared
Humminbird PiranhaMAX 197c DI often compared