Total threads
The number of threads supported by the laptop processor.
A thread is a sequence of instructions executed by a processor. Initially, each processor core was designed for one such sequence, and the number of threads was equal to the number of cores. However, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two instruction sequences at once. Such technologies have different names for different manufacturers, but the principle of their operation is the same: during the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with a different sequence. Accordingly, the total number of threads in such processors is twice the number of cores; such a scheme of work significantly increases productivity (although, of course, it also affects the cost).
3DMark06
The result shown by the laptop processor in 3DMark06.
This test is primarily focused on testing performance in games — in particular, the ability of the processor to process advanced graphics and artificial intelligence elements. Test scores are reported as scores; the higher this number, the higher the performance of the tested chip. Good 3DMark06 results are especially important for
gaming laptops.
Passmark CPU Mark
The result shown by the laptop processor in the Passmark CPU Mark test.
Passmark CPU Mark is a comprehensive test that is more detailed and reliable than the popular 3DMark06 (see above). It checks not only the gaming capabilities of the CPU, but also its performance in other modes, based on which it displays the overall score; this score can be used to fairly reliably evaluate the processor as a whole (the more points, the higher the performance).
SuperPI 1M
The result shown by the laptop processor in the SuperPI 1M test.
The essence of this test is to calculate the number "pi" to the millionth decimal place. The time spent on this calculation is the final result. Accordingly, the more powerful the processor, the smaller the result will be (this SuperPI 1M is fundamentally different from many other tests).
Graphics card type
—
Integrated(built-in). Video cards that do not have their own memory and use the general system RAM during operation. In modern laptops, such video cards are usually part of the processor. Their main advantages are low cost and power consumption, as well as low heat generation. However, the performance of integrated graphics is noticeably lower than that of discrete graphics, and besides, at high loads it “eats” a significant part of the RAM, which negatively affects the overall system performance. Integrated graphics will be perfect for lighter tasks like document work, web surfing, and light gaming, but for more serious applications, more advanced solutions are worth choosing (see below).
—
Discrete. Graphics card as a separate module with its own processor and specialized memory dedicated exclusively to video processing. Such graphics are more expensive than integrated ones, but they significantly outperform them in terms of performance. In addition, even at high loads, it does not take up the total RAM, and some laptops are even able to allocate part of the video memory in addition to RAM if the graphics card is idle. So if you want to play modern games at least at medium settings, or plan to use a laptop for "heavy" graphic tasks like video editing or 3D design, you should definitely choose a model with discrete graphics (or one of its advanced options — Dual Graphics or SLI/Crossfire, see bel
...ow).
It is worth noting that most models with such video cards also have a built-in graphics core in the processor. So discrete graphics in modern laptops most often work in hybrid mode: an integrated module is used for simple tasks, and when the load increases, the system switches to discrete graphics.
— Dual Graphics. AMD proprietary technology used in systems equipped with Fusion integrated graphics processors and discrete Radeon graphics cards (originally stated to be compatible with the Radeon 6000 series). The difference between this mode and discrete graphics with automatic switching (see above) is that both video adapters are used not in turn, but simultaneously. Thus, their capacities are combined, which provides a significant increase in video performance. At the same time, Dual Graphics provides ample features for choosing a combination of processors and video cards, because. allows you to combine video cores with different operating frequencies without sacrificing a faster one. The main disadvantage of this technology is the inability to work with Direct X below version 10.
— SLI/CrossFire. Initially, SLI and CrossFire are proprietary technologies used by nVidia and AMD, respectively, to combine the power of several discrete graphics cards. This allows for very high graphics performance. On the other hand, installing several video adapters (even compact ones) in a laptop is associated with serious difficulties: such equipment significantly increases the dimensions of the case and significantly increases power consumption, not to mention the cost. As a result, there are very few laptops with SLI / Crossfire nowadays, and they all belong to the top gaming solutions.Graphics card series
A series of video cards installed in a laptop. Different models of video cards within the same series can vary significantly in performance, but their key features are usually the same.
—
Intel HD Graphics. Integrated graphics cards, the first solution in the Intel line to be built directly into the processor (before that, integrated graphics were part of the motherboard).
—
Intel Iris Graphics. Integrated graphics cards introduced in 2013 at the same time as some Haswell microarchitecture processors. In fact, this series is an advanced version of the Intel HD Graphics described above, with increased performance.
—
Intel Arc. Graphics accelerators based on the Xe HPG architecture, produced since 2022. The Intel Arc series is aimed at providing high performance graphics rendering (including gaming). Mobile video adapters of the line are supplied with hardware modules Matrix Engines (XMX) - they support the Intel XeSS image reconstruction method based on artificial intelligence algorithms.
— nVIDIA GeForce. A series of graphics cards that includes exclusively discrete solutions (see "Graphics card type"). At the same time, such models are quite capable of operating in hybrid graphics mode, in combination with a video chip built into the processor.
—
nVIDIA Quadro. The latest generation o
...f graphics adapters from nVIDIA are positioned by the developer as professional solutions primarily for 3D graphics.
— NVIDIA RTX A. A high-performance line of graphics cards for graphics, video processing, scientific discoveries and projects in VR. Maximally accelerates the execution of graphic and computational tasks when operating with large data arrays.
— AMD FirePro. Discrete graphics cards originally designed as high-end workstation solutions. Among laptops, they are found in premium-level models that focus on increased performance.
— AMD Radeon. A family of video cards from AMD, used primarily in laptops with processors from the same brand. Includes solutions of various types (integrated and discrete) and level (from low-cost to high-end).
— Qualcomm Adreno. Integrated graphics found in Qualcomm's Snapdragon processors (see "Processor Series"). It is primarily a solution for mobile gadgets, so it does not differ in performance, but it is very efficient in terms of power consumption.
— Apple. Usually, in this case, it means the graphics core built into the Apple M1 processor (see "Processor series"). The first generation of these processors used eight-core (rarely seven-core) integrated GPUs with support for up to 25,000 threads simultaneously.Graphics card model
GeForce graphics cards from NVIDIA:
RTX represented by
RTX 2060,
RTX 2060 Max-Q,
RTX 2070,
RTX 2070 Max-Q,
RTX 2070 Super, RTX
2070 Super Max-Q,
RTX 2080,
RTX 2080 Max-Q,
RTX 2080 Super,
RTX 2080 Super Max-Q,
RTX 3050,
RTX 3050 Ti,
RTX 3060,
RTX 3060 Max-Q,
RTX 3070,
RTX 3070 Max-Q, RTX 3070 Ti, RTX 3080,
RTX 3080 Ti,
RTX 4050,
RTX 4060,
R TX 4070,
RTX 4080,
RTX 4090 ;
MX1xx represented by MX110, MX130 and MX150,
MX2xx(MX230 and MX250),
MX3xx(MX330 and MX350),
MX450, GTX which represent GTX 1050,
GTX 1060,
GTX 1060 Max-Q,
GTX 1070,
GTX 1070 Max-Q,
GTX 1080,
GTX 1080 Max-Q,
GTX 1650,
GTX 1650 Max-Q,
GTX 1650 Ti,
GTX 1660 Ti,
GTX 1660 Ti Max-Q and. AMD also offers video cards
Radeon 520,
Radeon 530(535),
Radeon 540X,
Radeon 610(625, 630),
Radeon RX 550 (550X, 560),
Radeon RX 640,
Radeon RX 5500M,
Radeon RX 6800M and
Radeon Pro.
Note that all the above models are discrete. Actually, for a configuration with discrete graphics, it is the model of a separate video adapter that is indicated; if it is supplemented by an integrated module, the name of this module can be clarified by the official characteristics of the processor.
It is also worth mentioning that this paragraph does not give the full name of the model, but only its name within the series (the series itself is given separately - see above). However, knowing the series and model, one can easily find detailed information about the graphics card.
Video memory
The amount of native video memory installed in the laptop's graphics card. Only discrete video adapters and their advanced varieties like SLI or Dual Graphics have such memory (see "Video card type").
The more memory, the more powerful the graphics card and the better it can handle complex graphics. Of course, the specific capabilities of the adapter depend on a number of other parameters (primarily the characteristics of the graphics processor); however, the difference in the amount of memory, as a rule, is quite consistent with the difference in the overall level. In terms of specific numbers, solutions with
2 GB are entry-level,
4 GB and
6 GB are intermediate, and
8 GB - to advanced, and
12 GB and
16 GB can be found in top-end gaming laptops and high-end workstations.
Memory type
The type of dedicated graphics memory used by the discrete graphics card (see "Video Card Type").
— GDDR3. The third generation of memory based on double data transfer technology. Compared to the previous standard, GDDR 2 is capable of operating at higher frequencies and less heat. However, it is gradually being replaced by more advanced standards, in particular GDDR5.
— GDDR5. Fifth generation graphics memory with double data transfer; in this generation, for the first time, the DDR3 RAM standard was taken as the basis. It is considered quite advanced, typical mainly for high-performance video cards.
— GDDR5X. A modification of the GDDR5 described above, introduced in early 2016. Compared to the original, it provided a 2-fold increase in maximum throughput, which accordingly affected the overall performance. However such video cards are not cheap, which is why they are used mainly in premium gaming laptops.
— GDDR6. Further, after GDDR5X, the development of GDDR-type graphic memory, introduced in 2017. Provides twice the speed of the original GDDR5, with slightly less power consumption; GDDR6 capabilities are enough, in particular, for use in virtual reality systems and work with resolutions above 4K. The use of such memory is typical for the most advanced video cards installed mainly in powerful gaming laptops.
— HBM2. The second generation of HBM type memory. Unlike the GDDR described above, HBM is not a modificat...ion of the usual "RAM" of the DDR type, but a separate type of memory, developed including for video cards. Due to the design features, such memory provides high bandwidth at a low clock frequency; the latter has a positive effect on power consumption and heat dissipation, and in terms of performance, HBM2 outperforms even the most advanced versions of GDDR. The disadvantage of this option is traditional — high price; because of it, video cards with this type of memory are installed mainly in premium laptops.