United Kingdom
Catalog   /   Tools & Gardening   /   Power Tools   /   Drills & Screwdrivers

Comparison Bosch EasyImpact 550 0603130020 vs Bosch PSB 650 RE 0603128020

Add to comparison
Bosch EasyImpact 550 0603130020
Bosch PSB 650 RE 0603128020
Bosch EasyImpact 550 0603130020Bosch PSB 650 RE 0603128020
Compare prices 3
from $79.96 up to $99.96
Outdated Product
TOP sellers
Product typedrilldrill
Designgungun
Specs
Real power370 W
Power consumption550 W650 W
Rotation speed3000 rpm3000 rpm
Max. beats33000 bpm48000 bpm
Torque
11 Nm
9 Nm
Reducer1-speed1-speed
Number of speeds11
Reversesliderslider
Weight1.5 kg1.7 kg
Chuck
Chuck typekeylesskeyless
Chuck diameter13 mm13 mm
Wood drilling max. 25 mm30 mm
Metal drilling max. 8 mm12 mm
Concrete drilling max. 10 mm14 mm
Features
Features
impact mode
power button lock
 
impact mode
power button lock
speed controller
In box
additional handle
depth gauge
case (bag)
additional handle
depth gauge
case (bag)
Power supply
Power sourcemains (230 V)mains (230 V)
Added to E-Catalogjune 2017january 2010

Real power

The useful power of the tool is the maximum power that it can deliver to the working nozzle. This power is always less than the power consumed (see below), since part of the electricity inevitably goes to heat and friction in the tool mechanisms. In addition, this parameter is not given for every model, often information in the characteristics is limited to power consumption. Nevertheless, the actual capabilities of the tool directly depend on the net power: the higher it is, the greater the speed and/or torque this model is able to develop, the easier it is for it to cope with tasks that require high efforts. So, to compare different devices with each other, it is best to use this parameter (of course, you can only compare models of the same type or similar in type).

Also note that high working power is not always an advantage: it accordingly affects the dimensions, weight and price of the tool, while in fact high speeds and efforts are not always necessary. Detailed recommendations on the optimal values for different tools and different types of work can be found in special sources.

Power consumption

The total power consumed by a mains-powered electric tool (see "Power Source"). It is considered the main criterion for assessing the overall capabilities of a particular model: more power allows you to achieve more speed and/or torque. However a more correct parameter for such an assessment is useful (working) power, but it is far from always indicated, and tools of the same type with similar power consumption usually do not differ much in terms of working power. In addition, data on power consumption also allows you to estimate the load on the power grid or other power source; in some cases this is unnecessary.

As for specific figures, for different types of tools, the characteristic power values will be different. For example, from 750 to 1000 W is considered a very solid indicator for a screwdriver, while for classic drills this is an average value, among such devices there are options even for 1.5 kW or more. Detailed recommendations on choosing a tool for this parameter can be found in special sources. We only note that it does not always make sense to chase the maximum values high power noticeably affects the dimensions, weight and price of the unit, despite the fact that it is far from always required.

Max. beats

The number of beats per minute provided by a tool that supports the corresponding mode.

For more information about this mode, see "Functions", here we note that it can be provided both in drills and in screwdrivers and wrenches (see "Device"), and the meaning of the impact mode in these varieties is somewhat different. Therefore, the speeds differ: many drills are capable of delivering about 48,000 beats / min, or even 64,000 beats / min, while in screwdrivers and wrenches, 3200 beats / min are considered “classics of the genre”, and values above 3500 beats / min are practically do not meet.

The general meaning of this indicator is also directly related to the type. So, among drills, the difference in chiseling speed can be quite large. With these tools, more strokes improve overall productivity and efficiency, while fewer strokes improve accuracy and reduce the risk of damaging delicate materials. In screwdrivers and nutrunners, high speed also contributes to overall efficiency, but for most of these tools, the differences in this indicator are not significant enough to be noticeable in practice.

Torque

Torque is the maximum force with which this model is capable of turning the working nozzle.

Higher torque gives more options, it allows you to cope with complex tasks such as drilling in hard materials, unscrewing stuck screws and nuts, etc. On the other hand, a lot of force requires corresponding power — and this, in turn, affects the dimensions , weight and cost of the tool itself, and also puts forward increased power requirements (mains power, battery capacity or pressure / compressor performance). And for some tasks, excessive torque is basically unacceptable, so for maximum versatility, it is desirable to have torque control — and this affects the cost even more. And the more steps, the more optimally you can configure the tool to perform a particular type of work. So the general rule is this: when choosing, it is worth considering the specifics of the planned work, and not chasing the greatest working effort.

Detailed recommendations on choosing the optimal torque for different types of tools (see "Device") can be found in special sources. Here we note that it is of key importance primarily for screwdrivers, although it is also given for other types of tools. At the same time, in the “weakest” models, the maximum working force does not exceed 15 Nm, in the most powerful ones it is more than 150 Nm.

Weight

The total weight of the tool is usually the device itself, without attachments. For battery models (see "Power Source"), usually, the weight is indicated with a standard battery installed; for battery-powered models, the weight can be given both with and without batteries, but in this case this point is not particularly important.

Other things being equal, less weight simplifies work, increases accuracy of movement and allows you to use the tool for longer without tiring. However, note that high power and productivity inevitably increase the mass of the tool; and various tricks to reduce weight increase the price and can reduce reliability. In addition, in some cases, a massive design is more preferable. First of all, this applies to work with a large load — for example, drilling holes of large diameter, or making recesses with impact: a heavy tool is more stable, it is less prone to jerks and shifts due to uneven material, vibration of mechanisms, etc.

It is also worth noting that specific weight values are directly related to the type of tool (see "Device"). Screwdrivers are the lightest — in most of them this figure does not exceed 500 g. Screwdrivers and drill drivers are more "heavy": their average weight is 1.1 – 1.5 kg, although there are many lighter ( 0.6 – 1 kg) and heavier ( 1.6 – 2 kg or more ) models. And clas...sic drills and wrenches have the greatest weight: such a tool must be quite powerful, so for them 1.6 – 2 kg is an average, 2.1 – 2.5 kg is above average, and many units weigh more than 2, 5 kg.

Wood drilling max. ⌀

The largest diameter of holes that the tool can make when drilling with a conventional drill in wood.

The larger the hole diameter, the higher the resistance of the material, the more power the tool must provide and the higher the load on it. Therefore, the maximum allowable drilling diameter must not be exceeded, even if the chuck allows you to install a thicker drill bit — this can lead to tool breakage and even injury to others.

It is worth noting that some types of wood can have a fairly high density, and for them the actual allowable drill diameter will be, accordingly, less than the claimed one. However, this is true mainly for exotic breeds, which are extremely rare in our area.

Metal drilling max. ⌀

The largest diameter of holes that the tool is capable of making when drilling with a conventional drill in metal.

The larger the hole diameter, the higher the resistance of the material, the more power the tool must provide and the higher the load on it. Therefore, the maximum allowable drilling diameter must not be exceeded, even if the chuck allows you to install a thicker drill bit — this can lead to tool breakage and even injury to others.

Also note that the drilling diameter for metal is usually indicated based on medium hard steel and other similar materials. For metals and alloys that have a significantly higher hardness and density, the allowable drill thickness will be less; however, such situations occur infrequently, and if you wish, you can find out about the features of working with various alloys x in special sources.

Concrete drilling max. ⌀

The largest diameter of the holes that the tool is capable of making when drilling with a conventional drill in concrete. It is worth considering that in this case we are not talking about reinforced concrete — this material requires special methods of influence (ideally, the use of diamond crowns).

The larger the hole diameter, the higher the resistance of the material, the more power the tool must provide and the higher the load on it. Therefore, the maximum allowable drilling diameter must not be exceeded, even if the chuck allows you to install a thicker drill bit — this can lead to tool breakage and even injury to others.

Features

Impact mode. Ability to work in the so-called shock mode. Usually, this mode is turned on and off at the request of the user, and its meaning and features may be different, depending on the type of instrument (see "Device"). So, in drills, strikes are carried out along the axis of the drill, and their frequency is usually several thousand per minute — this has a positive effect on productivity and allows you to more effectively cope with hard, dense materials (although such a drill can not be replaced anyway). In turn, in screwdrivers and wrenches, it would be more correct to call the impact mode pulsed: in this format of operation, the tool nozzle does not rotate uniformly, but in separate jerks, usually at a frequency of about 3K per minute. It also improves work efficiency, which is especially useful when driving self-tapping screws into dense material and unscrewing old, “stuck” fasteners.

Engine brake. A device that additionally slows down the engine when the tool is turned off. The engine itself (and, accordingly, the working nozzle) after turning off can rotate for quite a long time by inertia; the brake stops this rotation almost immediately, so you do not have to keep the tool on weight for too long.

Power button lock. A function that allows you to lock the power button in the pressed position. Usually, it looks like an additional button insta...lled either on the start key itself or not far from it. This function is very convenient in situations where the tool has to be used for a long time without interruption — for example, when drilling several dozen holes at once: it is easier to fix the start button in the on position than to keep it pressed all the time, additionally straining the finger on the working hand. And the lock is turned off, usually, in the simplest way — for example, by briefly pressing the same start button.

Speed controller. Possibility to additionally limit the revolutions of the tool. By itself, smooth adjustment is available in almost all modern models: the harder you press the start button, the higher the speed. This allows you to directly "on the go" adjust the mode of operation of the tool to the specifics of the situation. And this regulator allows you to set the maximum speed of rotation, so that even when you press the button “to the stop”, the speed of the working nozzle does not exceed the specified value. This function is indispensable for some jobs that require precision — in particular, when processing delicate materials, for which too high a speed is fraught with damage.
Separately, we emphasize that the presence of a speed controller has nothing to do with the number of speeds (see above). For example, a tool may well have several speed modes, in each of which the speed can be further limited using a regulator.

Maintain momentum. A feature that allows you to maintain a constant speed of rotation of the nozzle, regardless of the load on it. Without special adjustment, at a constant engine power, the rotational speed inevitably drops with increasing load and increases with a decrease. And the revs control system monitors the resistance on the nozzle and, if necessary, changes the power in such a way that the rotation speed remains constant. This has a positive effect both on the quality of work and on the service life of the nozzles and the entire tool.

Electronic engine protection. A system that protects the engine from critical overloads — for example, in the event of a jammed drill — and overheating. If the motor load or motor temperature is exceeded, the power to the instrument is automatically turned off to avoid damage to the instrument.

Brushless motor. The presence of a brushless (brushless) motor in an electric tool. Such motors are noticeably superior to traditional collector motors in terms of efficiency, which can significantly reduce energy consumption without sacrificing power; this is especially important for cordless tools (see "Power Source"), where this feature is predominantly found. In addition, brushless motors are quieter and produce virtually no sparks during operation, making them perfect for working in high fire hazard environments. Their main disadvantages are traditional — the complexity of the design and high price.

Safety clutch. A device that protects the engine from damage during a sharp increase in load (for example, due to jamming of the drill). In such cases, the safety clutch disconnects the motor shaft from the tool chuck, avoiding overloads. Note that such devices can be both reusable and disposable — the latter are destroyed when triggered, and to continue working, you will need to install a new clutch.

Backlight. The built-in lamp for illumination of a place of work. This feature can be useful both in the evening/night time, and in hard-to-reach places where there is little penetration of outdoor lighting, as well as in situations where this lighting is too dim. Note that in addition to built-in light sources, modern tools can also be equipped with separate flashlights; for more details about them, see "Complete set".

Display. Own display, which can display various information about the operation and status of the device — for example, the torque or rotation speed set in the settings, and in battery models, there is also a battery charge indicator. Such a screen provides additional convenience and visibility, however, in general, this is a rather specific function that is extremely rare in modern power tools — for example, a speed or torque indicator can be provided directly on the regulator, and a conventional LED can be provided as a charge indicator, giving signals by blinking or colour change.

Synchronization with a smartphone. The ability to connect the instrument to a smartphone or other gadget (such as a tablet) via Wi-Fi or Bluetooth. Such a connection is usually used to adjust operating parameters such as speed or torque; doing this through a mobile application is often more convenient than through the controls on the instrument itself. And some models with this function also allow you to set password access: the tool simply will not respond to the start button until the correct password is entered on the control gadget.

Built-in bubble level. Built-in device to control the angle at which the tool is located to the horizon. As in ordinary levels, the role of the scale in such devices is played by a sealed flask with marks applied to it, containing a brightly coloured liquid and an air bubble. By the position of this bubble relative to the marks, the position of the entire tool is determined — namely, its correspondence to the vertical, horizontal, or pre-set tilt angle (the latter option, however, is almost never found in the built-in levels). At the same time, purely hand tools usually provide a single-axis level that reacts only to deviation from the horizontal forward or backward, and models with the ability to mount on a rack (see below) can also have a circular level that controls compliance with the vertical and determines deviations from it in any direction.

— Revolving mechanism for bits. A mechanism for storing and quickly changing bits used in tools for the corresponding purpose — mainly screwdrivers, but also some screwdrivers (see "Device"). In accordance with the name, the main part of the mechanism is a drum like a revolver, in the compartments of which the bits are stored. The mechanism is located behind the cartridge, and the choice of bits usually occurs as follows: you need to pull back a special casing or handle (if at that moment there was another bit in the cartridge, it will return to the drum), by turning the drum, select the compartment with the desired nozzle, and then move the casing / handle to its original position by pushing the nozzle out of the drum into the chuck. This feature significantly speeds up and simplifies the replacement of nozzles, and also reduces the risk of losing them. On the other hand, the revolving mechanism significantly affects the price and weight of the tool, and its capacity is usually limited to 6 – 8 nozzles. Thus, such a tool is usually also equipped with an adapter for installing bits in the traditional way, from the outside of the cartridge.

Water cooling(coolant). The tool has a coolant — a liquid cooling system (most often plain water) supplied to the working nozzle using a built-in pump. Such a system performs several functions at once. Firstly, it actually cools the nozzle, preventing damage due to overheating. Secondly, the liquid somewhat reduces friction at the point of contact, further reducing the load on the nozzle and increasing its durability. Thirdly, water absorbs dust generated during drilling, this dust does not fly into the air and does not enter the lungs of people around; and cleaning up after work is much easier. On the other hand, water cooling systems are quite expensive and bulky, and with relatively simple work and low loads, it is quite possible to do without coolant.

Soft start. A function that provides a smooth spin-up of the tool motor, with relatively little acceleration. This is achieved by limiting the starting current. Without such a limit, the current drawn by the motor at the time of starting can be quite high, causing the motor to start very abruptly, which increases the risk of letting go of the tool. In addition, current surges can lead to overloads in the network used for power. Soft start allows you to eliminate these phenomena to some extent. Note that it is used only in mains-powered models — the motors in cordless tools are not so powerful that they have the actual “troubles” described for them.
Bosch EasyImpact 550 0603130020 often compared