United Kingdom
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   Generators

Comparison Forte FG 3500E vs Forte FG 3500

Add to comparison
Forte FG 3500E
Forte FG 3500
Forte FG 3500EForte FG 3500
from $218.48 up to $260.00
Outdated Product
from $180.90 up to $235.32
Outdated Product
TOP sellers
Main
Electric starter. Automatic voltage regulator (AVR). Output 12 V.
Fuelpetrolpetrol
Output voltage230 B230 B
Rated power2.5 kW2.5 kW
Max. power2.7 kW2.8 kW
Alternatorsynchronoussynchronous
Alternator windingcoppercopper
Engine
ICE type4-stroke4-stroke
Motor typeTE200TE200
Engine size196 cm³196 cm³
Power6.5 hp6.5 hp
Launch typeelectric starter (key)manual
Fuel consumption1.3 L/h1.3 L/h
Fuel consumption550 g/kW·h550 g/kW·h
Fuel tank volume15 L15 L
Fuel level indicator
Continuous operation time11.5 h11.5 h
Motor coolingairair
Connection
Number of sockets (230/400 V)22
Sockets 230 V16 A x216 A x2
Output 12 Vterminalsterminals
Features
Functions
automatic voltage regulator (AVR)
voltmeter
automatic voltage regulator (AVR)
voltmeter
General
Noise level
67 dB /at a distance of 7 m/
Sound level (7 m)65 dB
Dimensions610x440x460 mm605x445x450 mm
Weight57 kg43 kg
Added to E-Catalogseptember 2011september 2011

Max. power

The maximum power supply that the generator can provide.

This power is slightly higher than the rated power (see above), but the maximum performance mode can only be maintained for a very short time - otherwise overload occurs. Therefore, the practical meaning of this characteristic is mainly to describe the efficiency of the generator when operating with increased starting currents.

Let us remind you that some types of electrical appliances at the moment of startup consume many times more power (and, accordingly, power) than in normal mode; this is typical mainly for devices with electric motors, such as power tools, refrigerators, etc. However, increased power for such equipment is needed only for a short time; normal operation is restored in just a few seconds. And you can evaluate the starting characteristics by multiplying the rated power by the so-called starting coefficient. For one type of equipment it is more or less the same (1.2 - 1.3 for most power tools, 2 for a microwave, 3.5 for an air conditioner, etc.); More detailed data is available in special sources.

Ideally, the maximum power of the generator should be no lower than the total peak power of the connected load - that is, the starting power of equipment with a starting factor above 1 plus the rated power of all other equipment. This will minimize the likelihood of overloads.

Launch type

Method of starting an electric generator engine. To start an internal combustion engine (gasoline or diesel, see “Fuel”), in any case, it is necessary to rotate the engine shaft; you can do this in two ways:

- Manual. With this starting method, the initial impulse is transmitted to the engine manually - usually the user needs to forcefully pull the cable that spins a special flywheel. The simplest in design and cheapest starting method, the additional equipment requires only the cable itself with a flywheel. On the other hand, it may require significant muscular effort from the user and is not well suited for high-power units.

Electric starter. With this type of starting, the engine shaft is rotated using a special electric motor, which is called a starter; The starter is powered by its own battery. This option for starting the generator power unit is the easiest for the user and requires a minimum of effort. Depending on the implementation of the electric starter, it is usually enough to turn the key in the ignition, press a button, turn a knob or spin a special drum, etc. The power of modern starters is sufficient even for heavy engines where manual starting is difficult or impossible. Also note that an electric starter is by definition required to use ATS autostart (see Features). On the other hand, additional equipment affects the weight and cost of the unit, sometimes quite notic...eably. Therefore, such starting systems are used mainly where they cannot be avoided - in the aforementioned heavy equipment, as well as generators with ATS.

Noise level

The noise level produced by the generator during normal operation. The less noise the unit makes, the more comfortable it is to use, the closer it can be placed to people, but the higher its price, all other things being equal.

It is also worth considering that generators with internal combustion engines are, in principle, quite noisy equipment. So, even the “quiest” units produce up to 70 dB - this is the volume of conversation in tones from medium to high. Accordingly, it is recommended to install the device remotely from the place of use. At the same time, we note that the noise level is not directly related to power: for example, among units with 80 dB or more, there are both heavy and relatively low-power models.

Sound level (7 m)

Sound pressure level in decibels at a distance of 7 m between the noise source and the ear of the equipment operator. Since people do not work in the immediate vicinity of the generator, the parameter will be useful for estimating the noise level at a distance. For example, current European Union regulations require that the sound power of generating sets with a power of more than 2 kW does not exceed 97 dB — at a distance of 7 m, the noise from the generator engine will correspond to a sound pressure of about 72 dB.

Weight

The total weight of the unit - as a rule, excluding fuel; The full fill weight can be easily determined by knowing the tank capacity.

In general, more powerful generators inevitably turn out to be heavier, but models with similar characteristics can differ noticeably in weight. When assessing these differences and generally choosing an option based on weight, it is worth taking into account the specific application of the generator. So, if the device will often be moved from place to place - for example, when used “on the road” - it may be worth paying attention to lighter units that are more convenient to transport. However, it is worth considering that the downside of a lightweight design is often an increased cost or a reduced degree of protection. But for stationary use, you can not pay much attention to this parameter - or even the opposite: choose a heavier (and, as a rule, more advanced and functional) option.

Regarding specific numbers, it is worth noting that modern generators in general are quite massive. So, a small weight for such equipment is considered not only up to 20 kg, but even 20 – 30 kg ; Many units weigh 150–200 kg, or even more, and the weight of stationary industrial models is already measured in tons.
Forte FG 3500E often compared
Forte FG 3500 often compared