United Kingdom
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison Syma X8 Pro vs MJX Bugs 8

Add to comparison
Syma X8 Pro
MJX Bugs 8
Syma X8 ProMJX Bugs 8
from £144.86 
Outdated Product
Outdated Product
TOP sellers
Main
The quadcopter has auto takeoff and auto landing modes.
You can connect virtual reality glasses (3D glasses)
Flight specs
Maximum flight time
9 min /charge time — 150 min/
14 min /charge time — 180 min/
Horizontal speed65 km/h
Camera
Camera typeremovable
removable /depending on configuration/
Number of megapixels1 MP
HD filming (720p)1280x720 px1280x720 px 30 fps
Viewing angles90°90°
Camera with control
Live video streaming
 /using WI-FI up to 30 metres/
 /before 500 m/
Flight modes and sensors
Flight modes
return "home"
acrobatic mode
return "home"
acrobatic mode
Sensors
GPS module
heights
gyroscope
 
heights
gyroscope
Control and transmitter
Controlremote control and smartphoneremote control only
Range70 m500 m
Control frequency2.4 GHz2.4 GHz
Smartphone mount
Display for broadcast FPV
 /depending on configuration/
FPV helmet for broadcast
 /depending on configuration/
Remote control power source4xAA4xAA
Motor and chassis
Motor typebrushless
Motor model1806 1800KV
Number of screws4 pcs4 pcs
Battery
Battery capacity2 Ah1.3 Ah
Voltage7.4 V7.4 V
Battery model2S2S
Batteries in the set1 pcs1 pcs
USB charging
General
Protected case
Body backlight
Materialplasticplastic
Dimensions500х500х190 mm205x205x90 mm
Weight645 g354 g
Color
Added to E-Catalogdecember 2017november 2017

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Horizontal speed

The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.

Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).

Number of megapixels

Resolution of the matrix in the standard camera of the quadrocopter.

Theoretically, the higher the resolution, the sharper, more detailed image the camera can produce. However, in practice, the quality of the "picture" is highly dependent on a number of other technical features - the size of the matrix, image processing algorithms, optical properties, etc. Moreover, when increasing the resolution without increasing the size of the matrix, the image quality may drop, because. significantly increases the likelihood of noise and extraneous artifacts. And for shooting video, a large number of megapixels is not required at all: for example, to shoot Full HD (1920x1080) video, which is considered a very solid format for quadrocopters, a sensor of only 2.07 megapixels is enough.

Note that high resolution is often a sign of an advanced camera with high image quality. However, this quality is not determined by the number of megapixels, but by the characteristics of the camera and the special technologies used in it. Therefore, when choosing a quadcopter with a camera, you should look not so much at the resolution as at the class and price category of the model as a whole.

HD filming (720p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in HD (720p).

HD 720p is the first high-definition video standard. Notably inferior to Full HD and 4K formats in terms of performance, it nevertheless provides pretty good detail without significant demands on the camera and processing power. Therefore, HD support is found even in relatively inexpensive copters. And in high-end models, it can be provided as an addition to more advanced standards.

In drones, HD cameras typically use the classic 1280x720 resolution; other, more specific options are practically non-existent. As for the frame rate, the higher it is, the smoother the video turns out, the less movement is blurred in the frame. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion HD.

Camera with control

The ability to remotely control the quadcopter camera. The set of features provided by such control depends both on the type of camera (see above) and on the specific model. So, when using a third-party camera on a gimbal, control functions are most often limited to turning and tilting the lens; but for regular cameras, start and stop shooting, fixing a photo on command, changing the viewing angle, etc. can be provided.

Sensors

Additional sensors provided in the design of the quadcopter.

— Heights. A sensor that determines the flight altitude of the machine. Such sensors can use the barometric or ultrasonic principle of operation. In the first case, the height is measured by the difference in atmospheric pressure between the current point and the starting point (that is, the sensor determines the height relative to the initial level); in the second, the sensor acts similarly to sonar, sending a signal to the ground and measuring the time it takes to return. Barometric sensors are not very accurate, but they work well at high altitudes — tens and hundreds of metres; ultrasonic — on the contrary, they allow you to accurately manoeuvre at low level flight, but lose effectiveness as you climb. However, in some advanced models, both options may be provided at once. Data from the height sensor can either be used by the quadcopter “independently” (for example, when hovering or automatically returning), or transmitted to the operator to the remote control or smartphone.

Optical. A sensor that allows the quadcopter to "see" the environment in certain directions. One of the simplest variants of such a sensor is a downward-facing camera that allows the device to “copy” the surface under which it flies. Due to this, the machine, for example, can navigate indoors, where the signal from GPS satellites does not reach. In...addition to such a chamber, "eyes" can also be provided from different sides of the machine. Note that optical sensors have certain limitations in their use — for example, they lose their effectiveness on dark, shiny or uniform (without noticeable details) surfaces, as well as at high speeds.

GPS module. A sensor that receives signals from navigation satellites (GPS, in some models also GLONASS) and determines the current geographical coordinates of the machine. Specific ways of using position data can be different: returning home, flying by waypoints (see below), recording a flight route, etc.

Gyroscope. A sensor that determines the direction, angle and speed of the machine's rotation along a specific axis. Modern technologies make it possible to create full-fledged three-axis gyroscopes of very compact dimensions, and it is with such modules that quadcopters are usually equipped. On the basis of gyroscopes, automatic stabilization systems usually work, returning the car to a horizontal position after a gust of wind, collision with an obstacle, etc. At the same time, such equipment affects the cost of the device, and in some cases (for example, during piloting), automatic stabilization is more of a hindrance than a useful feature. Therefore, some low-cost, as well as advanced aerobatic quadcopters, are not equipped with gyroscopes.

Control

The control method provided in the copter.

Modern drones are usually controlled by a remote control, a smartphone, or both. Here is a detailed description of each of these options:

— Remote control only. Management carried out exclusively from the complete remote control. The most common option, found in all varieties of drones — from the simplest entertainment models to high-end professional devices; and heavy commercial / industrial models (see "Type") are completely controlled exclusively in this way. Such popularity is explained by two points. Firstly, the functionality of the remote control can be almost anything — from a small device with a couple of levers and buttons to a multifunctional control unit with a screen for live broadcasts and displaying various specialized information. Thus, the equipment of the remote control can be optimally matched to the features of a particular copter. Secondly, you can install a powerful transmitter with a large range in the remote control (whereas the range of smartphones is very limited, and it also depends on the specific gadget model). Well, besides, the control panel is initially supplied with the drone (except that the batteries in some models need to be purchased separately).

— Smartphone only. Management carried out exclusively from a smartphone (or other similar gadget — for example, a tab...let) through a special application; communication is usually carried out via Wi-Fi. This option is good because almost any functionality can be provided in the control application; and the copter itself turns out to be convenient in transportation — in the sense that you do not need to carry a separate remote control with it. However, the range in such a control is very small — even under perfect conditions, it usually does not exceed 100 m, and in some models it does not even reach 50 m; and the actual communication range also strongly depends on the characteristics of the control gadget. In addition, the controls on the touch screen are not tactile, making blind control almost impossible. As a result, this option is very rare — in certain models of mini-drones and selfie-drones (see "In the direction"), for which the absence of a remote control and ease of carrying are important, and the described disadvantages are not critical.

— Remote control and smartphone. The ability to control the drone both from the remote control and from a smartphone. The features of both options are described in detail above; and their combination is found mainly in relatively simple devices, for which the shortcomings of control via a smartphone are not critical (although there are exceptions). At the same time, the main option for such copters is often control from an external gadget, and the remote control may not be included at all; This point does not hurt to clarify before buying. However, anyway, this control format gives the user the opportunity to choose the best option for a specific situation. For example, for recreational flights during a "sally" in nature, you can get by with a smartphone, and for aerobatic training, a remote control is better. So most modern quadcopters that can be controlled from a smartphone / tablet fall into this category.

Range

The range of the drone is the maximum distance from the control device at which a stable connection is maintained and the device remains controlled. For models that allow operation both from the remote control and from a smartphone (see "Control"), this item indicates the maximum value — usually achieved when using the remote control.

When choosing according to this indicator, note that the range is indicated for perfect conditions — within line of sight, without obstacles in the signal path and interference on the air. In reality, the control range may be somewhat lower; and when using a smartphone, it will also depend on the characteristics of a particular gadget. As for specific figures, they can vary from several tens of metres in low-cost models to 5 km or more in high-end equipment. At the same time, it should be said that the greater the range of communication, the higher its reliability in general, the better the control works with an abundance of interference and obstacles. Therefore, a powerful transmitter can be useful not only for long distances, but also for difficult conditions.

Smartphone mount

The presence of a mount for a smartphone or tablet on the quadcopter control panel.

This feature allows you to fix the electronic gadget in such a way that in the process of controlling the machine, its screen is constantly in front of the operator's eyes. This function is relevant primarily for live broadcasts from the device (see "Live broadcast (FPV)"). At the same time, the mount for the gadget can be found both in quadrocopters that initially have FPV mode, and in models that are not equipped with cameras (in which the possibility of live broadcasting depends on the characteristics of the installed camera). However, note that the size of the mount and its compatibility with various electronic devices may be different, so before buying it's ok to clarify what exactly can be installed on the remote control.
Syma X8 Pro often compared
MJX Bugs 8 often compared