Dark mode
United Kingdom
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison MJX Bugs 6 vs Aosenma CG035

Add to comparison
MJX Bugs 6
Aosenma CG035
MJX Bugs 6Aosenma CG035
Outdated ProductOutdated Product
TOP sellers
Main
You can connect virtual reality glasses (3D glasses)
The remote control is equipped with a removable 4.3 inch FPV monitor, which has a built-in battery. The quadcopter has the functions “auto-take-off” and “auto-landing”. The kit includes a 4 Gb microSD memory card
Flight specs
Maximum flight time12 min20 min
Horizontal speed50 km/h
Camera
Camera typeremovableremovable
HD filming (720p)1280x720 px 30 fps1280x720 px
Full HD filming (1080p)1920x1080 px 25 fps
Live video streaming
Memory card slot
Flight modes and sensors
Flight modes
 
 
acrobatic mode
return "home"
Follow me (tracking)
 
Sensors
 
heights
gyroscope
GPS module
heights
gyroscope
Control and transmitter
Controlremote control onlyremote control only
Range500 m300 m
Control frequency5.8 GHz2.4 GHz
Video transmission frequency2.4 GHz (Wi-Fi)
Display for broadcast FPV
Remote control power source4xAA4xAA
Motor and chassis
Motor typebrushlessbrushless
Motor model1806 1800KVEmax М1806 2300KV
Number of screws4 pcs4 pcs
Battery
Battery capacity1.3 Ah3.2 Ah
Voltage7.4 V7.4 V
Battery model2S2S
Batteries in the set1 pcs1 pcs
General
Protected case
Body backlight
Materialplasticplastic
Dimensions290x290x90 mm330x330x137 mm
Weight370 g300 g
Color
Added to E-Catalognovember 2017september 2017

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Horizontal speed

The highest speed that a quadcopter can achieve in horizontal flight. It is worth considering that in most cases this parameter is indicated for optimal operating conditions: a fully charged battery, low air temperature, minimum weight, etc. However, it is quite possible to rely on it both when choosing and when comparing different models of copters with each other.

Note that quadcopters were originally designed as stable and maneuverable aerial platforms, and not as high-speed vehicles. Therefore, you should specifically look for a fast quadcopter only in cases where the ability to quickly move from place to place is critical (for example, when the device is supposed to be used for video recording of fast-moving objects over large areas).

HD filming (720p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in HD (720p).

HD 720p is the first high-definition video standard. Notably inferior to Full HD and 4K formats in terms of performance, it nevertheless provides pretty good detail without significant demands on the camera and processing power. Therefore, HD support is found even in relatively inexpensive copters. And in high-end models, it can be provided as an addition to more advanced standards.

In drones, HD cameras typically use the classic 1280x720 resolution; other, more specific options are practically non-existent. As for the frame rate, the higher it is, the smoother the video turns out, the less movement is blurred in the frame. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion HD.

Full HD filming (1080p)

The maximum resolution and frame rate supported by the aircraft camera when shooting in Full HD (1080p).

The traditional resolution of such a video is 1920x1080; this is what is most often used in drones, although occasionally there are more specific options — for example, 1280x1080. In general, this is far from the most advanced, but more than a decent high-definition video standard, such an image gives sufficient detail for most cases and looks good even on a large TV screen — 32 "and more. At the same time, achieve a high frame rate in Full HD It is relatively simple and takes up less space than higher resolution content, so Full HD shooting can be done even on aircraft that support more advanced video formats like 4K.

As for the actual frame rate, the higher it is, the smoother the video turns out, the less motion is blurred in the frame. On the other hand, the shooting speed directly affects the requirements for the power of the hardware and the volume of the finished files. In general, values up to 24 fps can be called minimal, from 24 to 30 fps — medium, from 30 to 60 fps — high, and speeds over 60 fps are used mainly for slow motion Full HD.

Memory card slot

The presence of a slot for memory cards in the design of the quadcopter.

Usually, this function is provided in models equipped with cameras (see “Camera type”), and the cards themselves are used primarily for recording captured photos and videos. However, in some models, other data can be stored on such media — GPS tracks, flight routes, flight programs, etc. Anyway, cards are convenient, first of all, by the ability to quickly transfer data between the device and other devices that have a card reader (in particular, laptops).

It is worth noting that different devices can be designed for different standards of memory cards, and the media themselves are usually not supplied in the kit. Therefore, before choosing a card, you should clarify according to official data which type will be optimal for your model.

Flight modes

Return home function. With this function, the quadcopter can automatically return to the starting point. The specific details of this feature may vary. So, some models return "home" at the user's command, others are able to do it on their own — for example, when the signal from the remote control is lost or when the battery charge is critically low; in many devices, both options are provided at once. Also note that this function is found even in models that do not have a GPS module (see "Sensors") — the copter can navigate in space in another way (by inertial sensors, by a signal from the remote control, etc.).

Follow me mode. A mode that allows the quadcopter to constantly follow the user at a short distance — like a "personal drone". The way to implement this mode and the equipment required for it can be different: some models track the direction to the transmitter and the signal strength from it, others constantly receive data from the GPS module of a smartphone or other gadget and follow these coordinates, etc. Anyway, such a mode can be useful not only for entertainment, but also for quite practical purposes — for example, for using a quadcopter as an “air chamber”, constantly located next to the operator and at the same time not occupying hands.

Dronie (distance). Initially, the term “dronie” refers to a selfie (photo or video) taken from a...drone. This mode is mainly intended for such tasks. And its essence lies in the fact that the copter smoothly moves away from a certain object along a given trajectory, keeping this object in the centre of the frame. The classic version of flying in Dronie mode is moving away first horizontally, then horizontally and up; however, in some models, the copter’s trajectory can be further configured. Frame management can also be carried out in different ways — from simple pointing at a certain point and ending with the selection of an object on the screen with further "smart" tracking of this object. Anyway, for all its simplicity, such a shooting technique allows you to create quite interesting videos: for example, in this way you can first capture a group of people in close-up in one video, then the beauty of the landscape around them.

Rocket (distance up). A flight mode in which the copter smoothly rises to a predetermined altitude along a strictly vertical trajectory. Similar to the Dronie described above, it is mainly used when shooting video: first, a certain scene is shot in close-up, and as it rises, the camera covers an increasingly wider area around this scene. Usually, in Rocket mode, you can pre-set the height at which the device will stop.

"Orbit mode" (flying in a circle). A mode that allows you to launch the copter in a circular orbit around the specified point. It is also used mainly for shooting video: in such cases, the camera remains constantly pointed at a given object, but the angle and background, due to the movement of the drone, are constantly changing. In the "orbit" settings, usually, you can set its radius, height and direction of movement, as well as the angle of the camera.

Helix (circle in a spiral). Another mode used as an artistic technique for filming videos. In this mode, the copter, keeping a given object in the centre of the frame, moves around it in a spiral, gradually moving away and increasing its height. This allows you to get the maximum variety of angles and angles of coverage.

Note that Dronie, Rocket, Helix, and Orbit modes originally appeared as part of the proprietary QuickShot toolkit in DJI's Mavic series drones. However, later similar functions were introduced by other manufacturers, so now these names are used as common nouns.

Flight plan(Waypoints). The ability to set a specific flight route for the quadcopter, by control points. This feature is very similar to the GPS waypoint flyby (see above), but it works differently, without the use of GPS navigation. One of the most popular options is building a route in the smartphone application through which the copter is controlled; when the programme is launched, the smartphone issues a sequence of commands corresponding to the route to the device. In general, the Waypoints mode is not as accurate as a GPS waypoint flyby and offers fewer options. Therefore, this function is mainly for entertainment purposes; if the copter has a camera, it can be useful for taking a selfie or a simple video.

Flight by GPS points. A mode that allows you to launch a quadcopter along a specific route — by setting individual route points to the car in advance (according to GPS coordinates) and the order in which they are passed. In addition, additional settings may be provided — for example, speed and altitude on individual sections of the route. This function is similar to the Waypoints mode (see below) in many ways, but it is found mainly in mid-range and high-end devices. At the same time, the use of GPS provides higher accuracy, which allows the drone to be used for professional purposes. For example, if you set a route for shooting from the air in this way, the operator will be able to fully concentrate on working with the camera, without being distracted by controlling the copter.

Acrobatic mode. A special mode for performing aerobatics. Note that the specific meaning of this mode may be different, depending on the level and purpose of the copter. So, in the simplest entertainment models, automatic programs are usually provided that allow you to perform certain aerobatic manoeuvres literally “at the touch of a button”. And in advanced devices in flight mode, the stabilization system is turned off, and the drone is very sensitive to operator commands; this requires high precision in control, but gives maximum control over the flight.

Sensors

Additional sensors provided in the design of the quadcopter.

— Heights. A sensor that determines the flight altitude of the machine. Such sensors can use the barometric or ultrasonic principle of operation. In the first case, the height is measured by the difference in atmospheric pressure between the current point and the starting point (that is, the sensor determines the height relative to the initial level); in the second, the sensor acts similarly to sonar, sending a signal to the ground and measuring the time it takes to return. Barometric sensors are not very accurate, but they work well at high altitudes — tens and hundreds of metres; ultrasonic — on the contrary, they allow you to accurately manoeuvre at low level flight, but lose effectiveness as you climb. However, in some advanced models, both options may be provided at once. Data from the height sensor can either be used by the quadcopter “independently” (for example, when hovering or automatically returning), or transmitted to the operator to the remote control or smartphone.

Optical. A sensor that allows the quadcopter to "see" the environment in certain directions. One of the simplest variants of such a sensor is a downward-facing camera that allows the device to “copy” the surface under which it flies. Due to this, the machine, for example, can navigate indoors, where the signal from GPS satellites does not reach. In...addition to such a chamber, "eyes" can also be provided from different sides of the machine. Note that optical sensors have certain limitations in their use — for example, they lose their effectiveness on dark, shiny or uniform (without noticeable details) surfaces, as well as at high speeds.

GPS module. A sensor that receives signals from navigation satellites (GPS, in some models also GLONASS) and determines the current geographical coordinates of the machine. Specific ways of using position data can be different: returning home, flying by waypoints (see below), recording a flight route, etc.

Gyroscope. A sensor that determines the direction, angle and speed of the machine's rotation along a specific axis. Modern technologies make it possible to create full-fledged three-axis gyroscopes of very compact dimensions, and it is with such modules that quadcopters are usually equipped. On the basis of gyroscopes, automatic stabilization systems usually work, returning the car to a horizontal position after a gust of wind, collision with an obstacle, etc. At the same time, such equipment affects the cost of the device, and in some cases (for example, during piloting), automatic stabilization is more of a hindrance than a useful feature. Therefore, some low-cost, as well as advanced aerobatic quadcopters, are not equipped with gyroscopes.

Range

The range of the drone is the maximum distance from the control device at which a stable connection is maintained and the device remains controlled. For models that allow operation both from the remote control and from a smartphone (see "Control"), this item indicates the maximum value — usually achieved when using the remote control.

When choosing according to this indicator, note that the range is indicated for perfect conditions — within line of sight, without obstacles in the signal path and interference on the air. In reality, the control range may be somewhat lower; and when using a smartphone, it will also depend on the characteristics of a particular gadget. As for specific figures, they can vary from several tens of metres in low-cost models to 5 km or more in high-end equipment. At the same time, it should be said that the greater the range of communication, the higher its reliability in general, the better the control works with an abundance of interference and obstacles. Therefore, a powerful transmitter can be useful not only for long distances, but also for difficult conditions.

Control frequency

The frequency used to communicate between the aircraft and its control device (usually a remote control).

Some time ago, devices with analog control at a frequency of 27.145 MHz and 40 MHz could be found on sale. However, today these standards have practically fallen out of use and modern copter drones mainly use digital communications at a frequency of 2.4 GHz or 5.8 GHz(and some models support both of these ranges at once). This type of control has a number of advantages over analogue control. Firstly, it is less sensitive to interference: on an analog channel, a drone can mistake possible interference for a command and make an unexpected maneuver, while distortion of digital data is perceived precisely as distortion and does not affect the operation of the device. Secondly, the digital format provides high bandwidth, allowing you to even broadcast high-definition video directly from a drone. Thirdly, with this control, each “remote control-copter” pair is automatically allocated its own communication channel, and the system first checks whether it is being used by another pair of devices. Thanks to this, several devices can operate in close proximity without interfering with each other.

As for the features of specific frequency ranges, they are as follows:

- 2.4 GHz. The most popular standard in modern drones. This is due, on the one hand, to low cost (with all the advan...tages of digital control), and on the other hand, to expanded compatibility. The fact is that 2.4 GHz is the most common range of Wi-Fi modules in smartphones, tablets, etc.; so compatibility with this range allows you to easily supplement the drone with the ability to control it from an external gadget (however, this capability is not mandatory). One of the disadvantages of 2.4 GHz is also associated with the abundance of devices that use this frequency: in addition to Wi-Fi, these are Bluetooth modules, some other electronic devices, as well as most remote controls for radio-controlled equipment (not just copters). So this range is somewhat inferior to the 5.8-GHz range in terms of noise immunity; on the other hand, even with a busy broadcast, this moment is extremely rarely noticeable.

- 5.8 GHz. Further, after the 2.4 GHz described above, the development of digital standards. Allows for a longer communication range and is also more reliable, since there are significantly fewer extraneous signal sources at the 5.8 GHz frequency. In addition, the increase in frequency made it possible to increase bandwidth and effectively broadcast HD video from copters in the most advanced standards. However, some of the newest Wi-Fi standards also include support for this range, so drones in this category can also allow control from a smartphone (however, in such cases it is worth paying special attention to compatibility). The disadvantages of this option include the relatively high cost; however, thanks to the development and cheaper technology, support for 5.8 GHz can now be found even in relatively inexpensive copters.

- 2.4 GHz and 5.8 GHz. Support for both ranges described above - as a rule, with the ability to use any of them, at the user's choice. This provides additional convenience, reliability and versatility. For example, a model with two control methods (see “Control”) can use the 2.4 GHz band when working with a smartphone (which ensures a minimum of compatibility problems), and work with a remote control at 5.8 GHz (for maximum range and reliability). And drones controlled only from a remote control may even have a function such as automatically scanning ranges and selecting the least loaded one. At the same time, dual-band models are slightly more expensive than single-band ones, but the difference in price (especially with devices only at 5.8 GHz) is not particularly significant. So most modern copters capable of operating at a frequency of 5.8 GHz fall into this category.

When using specialized communication protocols, control signals between the copter and the remote control can be transmitted at special frequencies: 720 MHz, 915 (868) MHz.
MJX Bugs 6 often compared
Aosenma CG035 often compared