Dark mode
United Kingdom
Catalog   /   Computing   /   Networking   /   Switches

Comparison Zyxel GS1900-24E vs Zyxel GS1100-16

Add to comparison
Zyxel GS1900-24E
Zyxel GS1100-16
Zyxel GS1900-24EZyxel GS1100-16
Compare prices 5Compare prices 7
User reviews
0
0
0
3
0
0
0
1
TOP sellers
Main
The switch supports the IEEE 802.3az standard, which was designed to reduce power consumption while maintaining high throughput. The switch automatically enters low power mode based on traffic.
Typemanaged 2 level (L2)unmanaged
Mountdesktoprack-mount
Bandwidth48 Gbps23.8 Gbps
MAC address table size8K8K
Ports
Gigabit Ethernet2416
Features
Control
Web interface
SNMP
 
 
Basic features
Link Aggregation
VLAN
loop protection
access rate limit
 
 
 
 
General
PSUbuilt-inbuilt-in
Supply voltage100 – 240 В100 – 240 В
Dimensions (WxDxH)267x162x42 mm215x133х42 mm
Weight1560 g920 g
Added to E-Catalogmay 2018september 2014

Type

Unmanaged. The simplest kind of switch that does not have, as the name suggests, the ability to manage; and the possibilities of monitoring the state of the device are usually limited to the simplest indicators in the form of light bulbs (power supply, port activity). The advantages of such models are battery life, ease of use and low cost. The main disadvantage of this type is obvious — the impossibility of configuring the operation parameters. Unmanaged switches are well suited for small LANs like a home or small office where little administration tricks are required; but for large organizations they should not be used.

Customizable. This category includes switches that allow you to change some of the operating parameters. At the same time, the possibilities for such changes are much narrower than in managed models, and the matter is usually limited to disabling individual ports, switching standard speeds for Ethernet connectors (for example, from 100 Mbps to 10 Mbps) and simple monitoring tools like browsing the network statistics. In addition, after reconfiguration, the device, usually, needs to be rebooted — in other words, it is impossible to control the operation of the switch on the fly. However, professional models designed for large networks can also belong to this type.

Managed 2 levels. The term "managed" means that the switch has the ab...ility to reconfigure "on the fly" — in contrast to the configurable models described above. In addition, the overall functionality of such devices in most cases is noticeably wider. And "layer 2" means that the device supports only the second layer of the OSI network model — the channel, which is responsible for physical addressing. In fact, this means that the switch is able to work with the MAC addresses of connected devices, but IP addressing is beyond its capabilities.

— Managed 3 levels. A kind of managed switches (see above) that supports the third level of the OSI network model. This layer is responsible for logical addressing and route definition, which allows the device to work with IP addresses. Due to this, models of this type are considered the most advanced, they often provide not only the traditional features for "switches", but also individual functions of routers. On the other hand, the abundance of features significantly affects the price. These switches are commonly used in data centers, telecommunications companies, and other professional networking environments; it hardly makes sense to purchase such a device for a home or small office.

Mount

The form factor determines how the switch is installed.

Desktop. Devices designed to be placed on a flat surface such as a countertop or shelf; some models also allow hanging on the wall. Significantly easier to install than rack or DIN rail equipment (see below), but most desktop switches are entry-level, maximum mid-range. This is because desktop placement is less secure than rack or rail mounting, making it less suitable for professional equipment.

Rack mounted. Switches designed for installation in a telecommunications rack. To do this, the design provides for an appropriate set of fasteners, and the body is made in a standard size. This size is quite large, which allows for numerous network ports; and the rack mounting itself is reliable. Therefore, this option is used by most professional-level switches, although there are also relatively simple models with this installation method.

Mounted on a DIN rail. Switches mounted on a standard DIN rail. Such rails are used as mounting fixtures, in particular, on electrical panels and in cabinets for special equipment, however, if desired, they can be fixed to any vertical surface, including a regular wall. Specifically, "switches" with a similar installation, as well as rack-mounted ones, are mainly of a professional level; however, rail-mounted models are much smaller, resulting in more m...odest functionality and fewer ports. Also note that they are usually executed in a vertical rather than a horizontal layout.

Street (on the mast). Switches that can be installed outdoors. A characteristic feature of such equipment is the enhanced protection of the case, which protects the internal components from dust, moisture, high and low temperatures, etc. winter application (if you need a frost-resistant model, you can use the "Operating temperature" list below). However, if the equipment needs to be placed on the street (or in a room where the conditions are not very different from the street ones), then it is definitely worth choosing from this category.

Bandwidth

The bandwidth of a switch is the maximum amount of traffic that it can handle. Specified in gigabits per second.

This parameter directly depends on the number of network ports in the device (excluding Uplink). Actually, even if the bandwidth is not given in the specifications, it can still be calculated using the following formula: the number of ports multiplied by the bandwidth of an individual port and multiplied by two (since both incoming and outgoing traffic are taken into account). For example, a model with 8 Gigabit Ethernet connectors and 2 SFP ports will have a bandwidth of (8*1 + 2*1)*2 = 20 Gbps.

The choice for this indicator is quite obvious: you need to evaluate the expected traffic volumes in the serviced network segment and make sure that the switch's bandwidth will cover it with a margin of at least 10-15% (this will give an additional guarantee in case of emergency situations). At the same time, if you plan to often work at high, close to maximum, loads, it will not hurt to clarify such a characteristic as the internal bandwidth of the switch. It is usually given in a detailed technical description, and if this value is less than the total throughput, serious problems may arise under significant loads.

Gigabit Ethernet

The number of standard Gigabit Ethernet RJ-45 network connectors provided in the design of the switch.

As the name suggests, these connectors provide data transfer rates up to 1 Gbps. Initially, Gigabit Ethernet was considered a professional standard, and even now the real needs for such speeds arise mainly when performing special tasks. Nevertheless, even relatively inexpensive computers are now equipped with gigabit network adapters, not to mention more advanced technology.

As for the number of connectors, it corresponds to the number of network devices that can be connected to the "switch" directly, without the use of additional equipment. In the case of Gigabit Ethernet, the number of connectors up to 10 inclusive is considered relatively small, from 10 to 25 — average, and the presence of more than 25 ports of this type is typical for professional-level models. At the same time, it is worth noting that in some "switches" individual connectors of this type are combined with optical SFP or SFP + (see below). Such connectors are marked "combo" and are taken into account both in the RJ-45 count and in the SFP/SFP+ count.

Control

Management methods and protocols supported by the switch.

SSH. Abbreviation for Secure Shell, i.e. "Safe shell". The SSH protocol provides a fairly high degree of security, because. encrypts all transmitted data, including passwords. Suitable for managing almost all major network protocols, but requires a special utility on the host computer.

Telnet. A network management protocol that provides configuration using a text-based command line. It does not use encryption and does not protect transmitted data, and is also devoid of a graphical interface, which is why in many areas it has been supplanted by more secure (SSH) or more convenient (web interface) options. However, it is still used in modern network equipment.

Web interface. This function allows you to open the management interface of the switch in a common Internet browser. The main convenience of the web interface is that it does not require additional software — a browser is enough (and it is available in any "self-respecting" modern OS). Thus, knowing the device address, login and password, you can manage the settings from almost any computer on the network (unless, of course, otherwise specified in the access parameters).

SNMP. Abbreviation for Simple Network Management Protocol, i.e. "simple network control protocol". It is a stan...dard part of the common TCP/IP protocol on which both the Internet and many local networks are built. It uses two types of software — "managers" on control computers and "agents" on managed computers (in this case, on a router). The degree of security is relatively low, but SNMP can be used for simple management tasks.

Note that this list is not exhaustive — modern switches may provide other management options, for example, support for proprietary utilities and special technologies from the same manufacturer.

Basic features

DHCP server. A feature that makes it easy to manage the IP addresses of devices connected to the switch. Without its own IP address, the correct operation of the network device is impossible; and DHCP support allows you to assign these addresses both manually and fully automatically. At the same time, the administrator can set additional parameters for the automatic mode (range of addresses, maximum time for using one address). And even in fully manual mode, work with addresses is performed only by means of the switch itself (whereas without DHCP, these parameters would also have to be specified in the settings of each device on the network).

Stacking support. The ability to operate the device in stack mode. A stack consists of several switches that are perceived by the network as one “switch”, with one MAC address, one IP address, and with a total number of connectors equal to the total number of ports in all involved devices. This feature is useful if you want to build an extensive network that lacks the capabilities of a single switch, but do not want to complicate the topology.

Link Aggregation. Switch support for link aggregation technology. This technology allows you to combine several parallel physical communication channels into one logical one, which increases the speed and reliability of the connection. Simply put, a switch with such a fun...ction can be connected to another device (for example, a router) not with one cable, but with two or even more at once. The increase in speed in this case occurs due to the summation of the throughput of all physical channels; however, the total speed may be less than the sum of the speeds — on the other hand, combining several relatively slow connectors is often cheaper than using equipment with a more advanced single interface. And the increase in reliability is carried out, firstly, by distributing the total load over individual physical channels, and secondly, by means of "hot" redundancy: the failure of one port or cable can reduce the speed, but does not lead to a complete disconnection, and when the channel is restored, the channel is switched on automatically.
Note that both the standard LACP protocol and non-standard proprietary technologies can be used for Link Aggregation (the latter is typical, for example, for Cisco switches). In addition, there are quite a few alternative names for this technology — port trunking, link bundling, etc.; sometimes the difference is only in the name, sometimes there are technical nuances. All these details should be clarified separately.

VLAN. Support of the VLAN function by the switch — virtual local area networks. In this case, the meaning of this function is the ability to create separate logical (virtual) local networks within the physical "local area". Thus, it is possible, for example, to separate departments in a large organization, creating for each of them its own local network. The organization of VLAN allows you to reduce the load on network equipment, as well as increase the degree of data protection.

— Protection against loops. The switch has a loop protection function. The loop in this case can be described as a situation where the same signal is launched in the network in an endless loop. This may be due to incorrect cable connection, the use of redundant links and some other reasons, but anyway, such a phenomenon can “put down” the network, which means it is highly undesirable. Security prevents loops, usually by disabling looped ports.

— Limiting the speed of access. The ability to limit the data exchange rate for individual switch ports. Thus, it is possible to reduce the load on the network and prevent the "clogging" of the channel by individual terminals.

Note that the matter is not limited to this list: other features may be found in modern switches.
Zyxel GS1900-24E often compared
Zyxel GS1100-16 often compared