Dark mode
United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   AV Receivers

Comparison Denon AVR-X2500H vs Denon AVR-X1500H

Add to comparison
Denon AVR-X2500H
Denon AVR-X1500H
Denon AVR-X2500HDenon AVR-X1500H
from £249.00 
Outdated Product
Outdated Product
TOP sellers
Main
DTS Virtual:X support
DTS Virtual:X support
Device typeAV ReceiverAV Receiver
CPU
Auto sound calibration
Auto level
Surround sound in headphones
Ultra HD4K4K
UpscalingUltra HD (4K)
3D
Multi Zone
Tech specs
Number of channels7.27.2
Power per channel95 W80 W
Signal to noise ratio100 dB98 dB
Acceptable acoustic impedance4 Ohm4 Ohm
Frequency range10 – 100000 Hz10 – 100000 Hz
Media player and tuner
Tuner and playback
AM/FM radio
USB drive
network streaming audio
internet radio
AM/FM radio
USB drive
network streaming audio
internet radio
Streaming services
Spotify
Deezer
TIDAL
 
 
 
Playable formatsWMA, MP3, WAV, FLAC, MPEG-4 AAC, ALAC, DSD, AIFFWMA, MP3, WAV, FLAC, MPEG-4 AAC, ALAC, DSD, AIFF
Communications (interface)
Interfaces
AirPlay 2
Wi-Fi
Bluetooth
LAN
RS-232
 
roon tested
Remote control negotiation
Amazon Alexa
AirPlay 2
Wi-Fi
Bluetooth
LAN
 
DLNA
 
Remote control negotiation
Amazon Alexa
Decoder support
Decoders
Dolby Atmos
Dolby Digital
Dolby Digital Plus
Dolby TrueHD
DTS
DTS Express
DTS 96/24
DTS-HD High Resolution Audio
DTS-HD Master Audio
DTS ES Matrix 6.1
DTS ES Discrete 6.1
DTS Neural:X
DTS X
Dolby Atmos
Dolby Digital
Dolby Digital Plus
Dolby TrueHD
DTS
DTS Express
DTS 96/24
DTS-HD High Resolution Audio
DTS-HD Master Audio
DTS ES Matrix 6.1
DTS ES Discrete 6.1
DTS Neural:X
DTS X
Inputs
RCA4 pairs2 pairs
Coaxial S/P-DIF1 шт1 шт
Optical2 шт2 шт
HDMI8 шт6 шт
HDMI versionv 2.0v 2.0
Composite2 шт2 шт
Component2 шт
Phono
Control input (IR)
Outputs
RCA1 pairs1 pairs
HDMI2 шт1 шт
Composite1 шт1 шт
Component1 шт
On headphones6.35 mm (Jack)6.35 mm (Jack)
Control output (IR)
Front panel
Headphone output
USB port
HDMI input
General
Power consumption500 W430 W
Standby consumption0.1 W0.1 W
Learning remote control
Smartphone control
Dimensions (WxDxH)434x339x167 mm434х339х151 mm
Weight9.4 kg8.6 kg
Color
Added to E-Catalogjuly 2018july 2018

Upscaling

The ability to increase the resolution of the video signal processed by the receiver - if the original video resolution is lower. Depending on the capabilities of the receiver, in particular its HDMI ports, upscaling to Ultra HD 4K and upscaling to Ultra HD 8K may occur.

The principle of upscaling is that a relatively low-resolution video is supplemented with the required number of pixels using special algorithms. Due to this, when playing such a video, the quality of the “picture” is noticeably higher than without upscaling (although somewhat lower than that of content originally recorded in UltraHD). It makes sense to specifically look for a receiver with this function if you plan to use it with a 4K or 8K screen.

Power per channel

the maximum sound power that can be delivered by the power amplifier (if the receiver has one, see "Type") per speaker channel. It is worth noting here that in this case it is customary to indicate the so-called RMS (Rated Maximum Sinusoidal), or rated power. Rated is considered the highest power that the amplifier is guaranteed to be able to produce without interruption for an hour without any failures or breakdowns. Short-term jumps in the signal level can significantly exceed this value, but the main indicator is still the rated power.

The power of the amplifier largely determines the sound volume of the speaker system connected to the device. In fact, the loudness also depends on the characteristics of the speakers — sensitivity, impedance, etc.; however, other things being equal, the same acoustics on a more powerful amplifier will sound louder. In addition, this parameter also affects the compatibility of the speakers and the amplifier — it is believed that the difference in the nominal powers of these components should not exceed 10-15% (and ideally, the powers should generally match). And since different rooms require speakers of different power, this also affects the choice of amplifier for a particular environment; specific recommendations on the ratio of room characteristics and acoustic power can be found in special sources.

Also note that if the amplifier can operate with a load of different resistance (see..."Permissible acoustic impedance"), then for different options the power per channel will be different — the lower the resistance, the higher the power. In the characteristics, in this case, the maximum value of this parameter is usually indicated — that is, the power at the minimum allowable resistance.

Signal to noise ratio

This indicator determines the amount of extraneous noise that accompanies the sound output by the receiver's amplifier. It is convenient because it takes into account almost all possible significant noise — both created by the device itself and due to external causes. The higher the signal-to-noise ratio, the lower the noise volume compared to the main signal, the cleaner the amplifier will sound. A reading of 70-80 dB is considered normal for most consumer electronics, but in AV receivers, which are usually premium devices, this can only be called satisfactory. In the most advanced models, this figure can significantly exceed 100 dB.

Streaming services

A set of streaming services supported by the AV receiver.

Such services are designed for streaming audio content over the Internet. In this case, the files are not saved to the device, but are played directly from the corresponding resource on the global network. Streaming services allow you to access vast libraries of music without having to take up your device's internal storage. The key advantages of online streaming include a huge selection of content and almost instant access to the desired audio tracks. Popular ones include Amazon Music, Deezer, SoundCloud, Spotify, TIDAL, YouTube Music.

Interfaces

- AirPlay. Technology for transmitting multimedia data via a wireless connection ( Wi-Fi). Developed by Apple, it is intended mainly for broadcasting content from various Apple devices (primarily portable gadgets) to compatible external devices. Allows you to transfer audio files (in audio streaming mode, see “Tuner and playback” for more details), as well as images, text data and even video. The presence of AirPlay in the receiver will allow you to connect Apple equipment with support for this technology to it for direct playback, as well as display information about files on an external screen (for example, a TV) - song name, artist name, etc.

- AirPlay 2. The second version of the AirPlay technology described above, released in 2018. One of the main innovations introduced in this update was support for the multi-room format - the ability to simultaneously broadcast several separate audio signals to different compatible devices installed in different locations. Thus, you can, for example, turn on the next episode of your favorite series from your iPhone on the TV in the living room, and relaxing music from your iPod in the kitchen, etc. In addition, AirPlay 2 received a number of other improvements - improved buffering, the ability to stream to stereo acoustics, as well as support for voice control via Siri.

- Chromecast.... Original name: Google Cast. Technology for broadcasting content to external devices, developed by Google. Allows you to transmit video and audio from a PC or mobile device to the AV receiver; broadcasting is usually carried out via Wi-Fi, while the receiver and the signal source must be on the same Wi-Fi network (with the exception of Chromecast media players). Chromecast technology supports two modes - actual broadcasting through special applications (available for Windows, macOS, Android and iOS) and “mirroring” content opened in the Google Chrome browser on an external screen.

- Wi-Fi. A wireless interface used primarily for building computer networks. Accordingly, AV receivers may need its presence primarily to implement network functions - streaming audio, Internet radio (see “Tuner and playback”), AirPlay (see above), DLNA (see below). Connecting to computer networks can also be done through a wired LAN interface(see below), but Wi-Fi is more convenient due to the absence of wires and the ability to work through obstacles (including walls) at a distance of several tens of meters. In addition, in some models, this technology can also be used to communicate directly with other devices - for example, to use a smartphone or tablet as a remote control, or to broadcast live video using Miracast technology or another similar format.

Bluetooth. Direct wireless communication technology between various electronic devices; operates at a range of about 10 m, although some specific operating formats provide a longer range. Technically, it can be used for different purposes, depending on the protocols supported by a particular device; In AV receivers, two protocols are most often found - A2DP for wireless broadcasting of audio signals and AVRCP for remote control. In the first case, we are usually talking about transmitting a signal from an external device (smartphone, laptop, etc.) to the receiver; theoretically, the opposite option is also possible - broadcasting sound to Bluetooth headphones or acoustics, however, for a number of reasons, this format of operation is almost never found in AV receivers. AVRCP, in turn, allows you to use an external gadget (for example, the same smartphone) as a remote control.

- LAN. A standard interface for wired connection of various equipment (including AV receivers) to computer networks, incl. to access the Internet. Due to the presence of a wire, it is less convenient to connect than the Wi-Fi described above. On the other hand, a LAN connection wins in terms of connection reliability and actual data transfer speed - especially if there are many wireless devices on the network and Wi-Fi channels are busy (which is often the case, since Wi-Fi modules are very popular in modern electronics ). Therefore, for working with large volumes of data - for example, watching high-definition video via DLNA (see below) - LAN is better suited.

— RS-232. A wired interface that originally appeared in computer technology. In AV receivers, it can be called a service connector: content is not transmitted through this connector, but through it you can connect the device to a computer and remotely change settings, as well as update the firmware.

— MHL. High-speed wired interface for transmitting multimedia data (video and audio) from mobile devices to external screens. The bandwidth allows you to work with high or even ultra-high resolution images, as well as multi-channel audio. Also, when connected, the gadget can be charged. In mobile devices, the MHL signal is output via a standard microUSB port; and the role of the input in AV receivers (and other stationary equipment) is played by the HDMI connector (see below) - however, not every connector, but only one that is initially compatible with MHL and has the appropriate marking. Adapters are available for connecting to regular HDMI, but additional functions (like charging) may not be available with this connection.

- DLNA. A technology used to connect various electronic devices into a single digital network with the ability to directly exchange content. Devices for which support for this standard is declared are able to communicate effectively regardless of the manufacturer. An AV receiver with DLNA can, for example, play a movie directly from the hard drive of a computer in the next room, or transfer photos from a smartphone to the TV. Connecting to the Network can be done either wired (LAN) or wirelessly (Wi-Fi, see above).

- Roon Tested. Roon Tested accreditation means the AV receiver is compatible with the popular audiophile music streaming platform Roon. Certified models have undergone a series of tests and meet the quality standards required to operate Roon flawlessly. This ensures convenient management and organization of content within the platform.

— Coordination of Remote control. A function that allows you to connect the AV receiver to another device (for example, a Blu-ray player or external amplifier) and control both devices with one remote control. When purchasing equipment with such a function, it is necessary to clarify compatibility - as a rule, only equipment from one manufacturer can work in such a “bundle”, and even in such cases, their own nuances are possible upon agreement.

— Voice assistant. Receiver support for voice assistant. The most popular assistants these days are:
  • Google Assistant
  • Apple Siri
  • Amazon Alexa
However, other solutions may also emerge. In any case, it is worth noting that we are not talking about an assistant built into the receiver itself, but about compatibility with external devices that have this function (for example, a smartphone or tablet). But even such compatibility allows you to give commands to the receiver by voice - this is often more convenient than more traditional control methods. The specific set of supported commands and languages may vary depending on the voice assistant and its specific version.

RCA

The number of analogue stereo RCA inputs provided in the design of the AV receiver. The more such inputs there are, the more transmitting devices can be simultaneously connected to the receiver. Thanks to this, when choosing between them, you do not have to reconnect cables — just set the signal source in the receiver settings.

By itself, the RCA connector (colloquially — "tulip") can be used in different interfaces. However, in this particular case, we are talking about a linear audio input responsible for an analogue audio signal. RCA is the most popular connector used in modern audio equipment for such inputs; it allows you to connect the receiver to an external audio source such as a CD player.

Note that connectors of this type are usually counted in pairs; in other words, one input consists of two RCA connectors. This is due to the fact that in this case only one channel of analogue audio can be transmitted over one wire; accordingly, two RCA jacks are required for stereo transmission.

HDMI

The number of HDMI inputs provided in the design of the receiver.

This interface is one of the most advanced digital standards used in modern electronics. It was originally developed for HD television and already in the first version it allowed to transmit a video signal with Full HD (1920x1080) resolution, accompanied by eight-channel (7.1, see "Number of channels") sound; in the future, the maximum resolution increased even more. Almost all modern TVs, monitors and plasma panels have at least one HDMI interface, the same applies to playback devices (players, media centers, etc.).

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables. In the case of HDMI, the abundance of connectors is especially important, given the prevalence of this standard in modern video equipment; in some receivers, the number of such inputs can be up to 10.

Component

The number of component inputs provided in the design of the receiver.

This interface (also known as YPbPr) is designed to transmit analogue video. Its name comes from the fact that the three main video components (brightness data and two colour difference channels) are carried over three separate cables. Accordingly, each individual component input is a set of three connectors. Usually, a built-in cable with RCA connectors (“tulip”) is used for connection, while the cables for component and composite (see below) interfaces are quite interchangeable.

The component interface stands out for its high signal transmission quality: splitting the video into three separate channels significantly reduces distortion compared to the same composite format, and the bandwidth is comparable to the above-described HDMI and allows you to work even with HD video. However, a component connection does not provide audio, and you will need to use a separate cable for this purpose.

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.

Phono

The presence of the Phono input in the design of the AV receiver.

This type of input is used to connect turntables. Despite the widespread popularity of digital media, classic vinyl records do not leave the scene. And it's not just a matter of nostalgia: many audiophiles believe that it is the record that provides the most authentic and complete sound, which is why turntables for vinyl are quite often found in high-end audio systems. However, the sound from such a player must be passed through a phono stage, otherwise there can be no question of any quality. For these purposes, in high-end equipment, including AV receivers, the Phono input is provided: the signal received at this input is fed to the built-in phono stage. This allows you to connect turntables directly, without additional external equipment.

Note that phono stages can be designed for different types of pickups — MM or MC; therefore, before connecting, check to see if the Phono input is compatible with your turntable's cartridge. However, many receivers with this function are equipped with a universal MM/MC phono stage.
Denon AVR-X2500H often compared
Denon AVR-X1500H often compared