eARC
The audio receiver
supports eARC, an enhanced version of the Audio Return Channel (ARC) used with an HDMI connection (see below).
By itself, the audio return channel allows you to "swap" the HDMI output of the AV receiver and the HDMI input of the TV or other external device — thus, this device turns into an audio signal source, and the receiver starts to work as a receiver. Such functionality is designed mainly for those cases when the TV receives a signal not from the receiver, but from another source (built-in tuner, media player, flash drive, etc.), however, the soundtrack must be output to external speakers through the receiver. Without ARC, you would have to use an additional connection (for example, via an optical interface), while the audio return channel eliminates the need for extra wires: the same HDMI cable is used both for transmitting video / audio from the receiver to the TV and for transmitting audio from TV to receiver. Also, the advantages of ARC over traditional audio interfaces are higher bandwidth, as well as the ability to use the CEC function (control of connected devices from one remote control).
Specifically, eARC was introduced simultaneously with the HDMI 2.1 standard and received a number of improvements compared to conventional ARC. Here are the main ones:
— Up to 40x more bandwidth, allowing uncompressed 5.1 and 7.1 surround sound, HD audio and Dolby Atmos and DTS:X "object-orie
...nted" multi-channel codecs (see Decoders).
— Technology Lip Sync Correct, eliminating desynchronization between video and sound.
— Proprietary protocol to automatically detect audio formats supported by both connected devices and select the best option.
Of course, in order to use eARC, both the receiver and the TV it is connected to must support it.Upscaling
The ability to increase the resolution of the video signal processed by the receiver - if the original video resolution is lower. Depending on the capabilities of the receiver, in particular its HDMI ports,
upscaling to Ultra HD 4K and
upscaling to Ultra HD 8K may occur.
The principle of upscaling is that a relatively low-resolution video is supplemented with the required number of pixels using special algorithms. Due to this, when playing such a video, the quality of the “picture” is noticeably higher than without upscaling (although somewhat lower than that of content originally recorded in UltraHD). It makes sense to specifically look for a receiver with this function if you plan to use it with a 4K or 8K screen.
HDR
Receiver support for
HDR technology; this clause may also specify the specific supported HDR format.
HDR stands for High Dynamic Range. This technology allows you to expand the range of brightness reproduced simultaneously on the screen; to put it simply, the viewer will see brighter whites and darker blacks. In practice, this means a significant improvement in color quality: colors are more vibrant and at the same time more faithful than without HDR. However, to use this function, in addition to the receiver, a TV/projector that supports the appropriate HDR format and content recorded in this format is required.
In terms of specific formats, the most popular options these days are basic HDR10, advanced HDR10+, and high-end
Dolby Vision. Here are their features:
- HDR10. Historically the first of the consumer HDR formats, less advanced than the options described below but extremely widespread. In particular, HDR10 is supported by almost all streaming services that provide HDR content at all, and it is also common for Blu-ray discs. Allows you to work with a color depth of 10 bits (hence the name). At the same time, devices of this format are also compatible with content in HDR10 +, although its quality will be limited by the capabilities of the original HDR10.
- HDR10+. Improved version of HDR10. With the same color depth (10 bits), it uses the so-called dynamic metadata,
...which allows transmitting information about the color depth not only for groups of several frames, but also for individual frames. This results in an additional improvement in color reproduction.
Dolby Vision. An advanced standard used particularly in professional cinematography. Allows you to achieve a color depth of 12 bits, uses the dynamic metadata described above, and also makes it possible to transmit two image options at once in one video stream - HDR and normal (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in modern video technology this format is usually combined with HDR10 or HDR10+.Number of channels
The maximum number of channels that the receiver can output to external speakers. This parameter is specified for all types (see above): even AV processors that do not have an amplifier as such are often equipped with a very extensive set of audio processing tools (and this set is sometimes even wider than in models with amplifiers).
The most popular options by the number of channels today are as follows:
— 2.1. The simplest option found in modern AV receivers is the classic two-channel stereo sound, supplemented by a third channel for a subwoofer. It is worth noting here that the "volume" of such a sound is very limited: it allows you to simulate the shift of the sound source to the left or right, but does not cover the space on the sides and behind the listener. Receivers of this kind are usually entry-level devices.
— 3.1. Such a system is usually the 2.1 described above, supplemented by a third front speaker — in the centre. This provides a more authentic sound from the front. And for some 3.1 systems, design tricks are claimed that allow them to be used for surround sound, similar to
5.1. Rear channels in such systems are simulated by reflecting sound from the walls behind the user. Of course, the sound accuracy is noticeably lower than that of a full-fledged 5.1, but this option may be optimal in tight spaces where there is no space for a full set of six-channel acoustics.
—
5.1. The most popular surround sound format that can provide the effect of "environment". 5 main channels include a centre, two front (left-right) and two rear (similarly), a unit indicates a separate low-frequency channel for a subwoofer.
— 5.2. Sound format similar to 5.1 above, except for two channels for subwoofers instead of one. This improves the quality of the bass sound, which can be useful for films with a lot of special effects, live performance recordings, etc.
— 6.1. A sound format with an expanded number of main channels relative to the classic 5.1. The sixth main channel in this format is usually the centre back — this increases the accuracy of the sound transmission in the back of the stage.
— 6.2. 6.1 version of the format described above, supplemented by a second subwoofer; this improves the quality of low frequency transmission and allows you to cover a larger area.
— 7.1. With this sound format, five main channels (similar to the 5.1 system described above) are supplemented with two more. There are a lot of options for installing speakers for these channels — for example, these can be additional speakers above two front or two rear speakers, two separate side speakers, an additional “centre” pair on the rear channel, etc. Anyway, an increase in the number of channels makes it possible to achieve a more accurate transmission of “surround” sound compared to 5.1, however, much less content has been released for such systems.
— 7.2. A variation on the 7.1 format (see above) that allows the use of two separate subwoofers; this increases the accuracy of the transmission of low frequencies and expands the possibilities for their adjustment.
— 8.4. A specific variant found in single models of AV receivers. It is not so much a generally accepted sound format as an illustration of advanced configuration options: up to 8 main speakers and up to 4 subwoofers can be connected to the device, which gives very extensive fine-tuning options (however, such options are not cheap).
— 9.1. One of the most advanced surround sound formats today: it includes 5 classic main channels (similar to a 5.1 system) and 4 additional ones, the location of which can be different — for example, two side speakers and two upper ones above the left and right front, or even 4 speakers, directed towards the ceiling. The 9.1 format allows you to achieve very high fidelity of multi-channel audio transmission, but it is expensive, difficult to set up, and very little content has been released for such systems.
— 9.2. Modification of the above 9.1 format, supplemented by a second subwoofer for more accurate and high-quality reproduction of low-frequency sound.
— 11.1. Further, after 9.1, expansion and improvement of the idea of multi-channel sound. Usually in 11.1 systems, the five "classic" main channels (see 5.1) are supplemented with six more in the following way: two speakers to the left and right of the centre (in addition to the left and right front), two height speakers above the main front and two more — above main rear. This significantly increases the accuracy of surround sound transmission and adds the ability to shift it not only horizontally, but also vertically. However, the price and complexity of setting up such systems is appropriate, so they are designed more for the professional sphere (for example, cinema halls of entertainment centers) than for home use.
— 11.2. Systems almost identical to those described above 11.1, but supplemented by a second subwoofer. The latter is useful not only for reliability, but also for covering a vast area.
— 12.4. A top-of-the-line AV receiver option that is designed to handle all existing surround sound formats (including "true" 3D sound) and offers extremely wide customization options (albeit at an appropriate price).
— 13.2. Another format typical for luxury AV receivers and similar to 12.4 described above (with the exception of differences in the number of channels, which are not critical in this case).
— 15.1. A very rare and expensive option, designed for the use of mainly advanced acoustic systems — in particular, the halls of small cinemas.
Note that this paragraph indicates the most advanced sound format that the receiver is capable of working with; the general set also includes simpler options. For example, 7.1 systems usually handle 5.1 without any problems, not to mention stereo.
Power per channel
the
maximum sound power that can be delivered by the power amplifier (if the receiver has one, see "Type") per speaker channel. It is worth noting here that in this case it is customary to indicate the so-called RMS (Rated Maximum Sinusoidal), or rated power. Rated is considered the highest power that the amplifier is guaranteed to be able to produce without interruption for an hour without any failures or breakdowns. Short-term jumps in the signal level can significantly exceed this value, but the main indicator is still the rated power.
The power of the amplifier largely determines the sound volume of the speaker system connected to the device. In fact, the loudness also depends on the characteristics of the speakers — sensitivity, impedance, etc.; however, other things being equal, the same acoustics on a more powerful amplifier will sound louder. In addition, this parameter also affects the compatibility of the speakers and the amplifier — it is believed that the difference in the nominal powers of these components should not exceed 10-15% (and ideally, the powers should generally match). And since different rooms require speakers of different power, this also affects the choice of amplifier for a particular environment; specific recommendations on the ratio of room characteristics and acoustic power can be found in special sources.
Also note that if the amplifier can operate with a load of different resistance (see
..."Permissible acoustic impedance"), then for different options the power per channel will be different — the lower the resistance, the higher the power. In the characteristics, in this case, the maximum value of this parameter is usually indicated — that is, the power at the minimum allowable resistance.Streaming services
A set of streaming services supported by the AV receiver.
Such services are designed for streaming audio content over the Internet. In this case, the files are not saved to the device, but are played directly from the corresponding resource on the global network. Streaming services allow you to access vast libraries of music without having to take up your device's internal storage. The key advantages of online streaming include a huge selection of content and almost instant access to the desired audio tracks. Popular ones include
Amazon Music,
Deezer,
SoundCloud,
Spotify,
TIDAL,
YouTube Music.
Interfaces
-
AirPlay. Technology for transmitting multimedia data via a wireless connection (
Wi-Fi). Developed by Apple, it is intended mainly for broadcasting content from various Apple devices (primarily portable gadgets) to compatible external devices. Allows you to transfer audio files (in audio streaming mode, see “Tuner and playback” for more details), as well as images, text data and even video. The presence of AirPlay in the receiver will allow you to connect Apple equipment with support for this technology to it for direct playback, as well as display information about files on an external screen (for example, a TV) - song name, artist name, etc.
-
AirPlay 2. The second version of the AirPlay technology described above, released in 2018. One of the main innovations introduced in this update was support for the multi-room format - the ability to simultaneously broadcast several separate audio signals to different compatible devices installed in different locations. Thus, you can, for example, turn on the next episode of your favorite series from your iPhone on the TV in the living room, and relaxing music from your iPod in the kitchen, etc. In addition, AirPlay 2 received a number of other improvements - improved buffering, the ability to stream to stereo acoustics, as well as support for voice control via Siri.
-
Chromecast.... Original name: Google Cast. Technology for broadcasting content to external devices, developed by Google. Allows you to transmit video and audio from a PC or mobile device to the AV receiver; broadcasting is usually carried out via Wi-Fi, while the receiver and the signal source must be on the same Wi-Fi network (with the exception of Chromecast media players). Chromecast technology supports two modes - actual broadcasting through special applications (available for Windows, macOS, Android and iOS) and “mirroring” content opened in the Google Chrome browser on an external screen.
- Wi-Fi. A wireless interface used primarily for building computer networks. Accordingly, AV receivers may need its presence primarily to implement network functions - streaming audio, Internet radio (see “Tuner and playback”), AirPlay (see above), DLNA (see below). Connecting to computer networks can also be done through a wired LAN interface(see below), but Wi-Fi is more convenient due to the absence of wires and the ability to work through obstacles (including walls) at a distance of several tens of meters. In addition, in some models, this technology can also be used to communicate directly with other devices - for example, to use a smartphone or tablet as a remote control, or to broadcast live video using Miracast technology or another similar format.
— Bluetooth. Direct wireless communication technology between various electronic devices; operates at a range of about 10 m, although some specific operating formats provide a longer range. Technically, it can be used for different purposes, depending on the protocols supported by a particular device; In AV receivers, two protocols are most often found - A2DP for wireless broadcasting of audio signals and AVRCP for remote control. In the first case, we are usually talking about transmitting a signal from an external device (smartphone, laptop, etc.) to the receiver; theoretically, the opposite option is also possible - broadcasting sound to Bluetooth headphones or acoustics, however, for a number of reasons, this format of operation is almost never found in AV receivers. AVRCP, in turn, allows you to use an external gadget (for example, the same smartphone) as a remote control.
- LAN. A standard interface for wired connection of various equipment (including AV receivers) to computer networks, incl. to access the Internet. Due to the presence of a wire, it is less convenient to connect than the Wi-Fi described above. On the other hand, a LAN connection wins in terms of connection reliability and actual data transfer speed - especially if there are many wireless devices on the network and Wi-Fi channels are busy (which is often the case, since Wi-Fi modules are very popular in modern electronics ). Therefore, for working with large volumes of data - for example, watching high-definition video via DLNA (see below) - LAN is better suited.
— RS-232. A wired interface that originally appeared in computer technology. In AV receivers, it can be called a service connector: content is not transmitted through this connector, but through it you can connect the device to a computer and remotely change settings, as well as update the firmware.
— MHL. High-speed wired interface for transmitting multimedia data (video and audio) from mobile devices to external screens. The bandwidth allows you to work with high or even ultra-high resolution images, as well as multi-channel audio. Also, when connected, the gadget can be charged. In mobile devices, the MHL signal is output via a standard microUSB port; and the role of the input in AV receivers (and other stationary equipment) is played by the HDMI connector (see below) - however, not every connector, but only one that is initially compatible with MHL and has the appropriate marking. Adapters are available for connecting to regular HDMI, but additional functions (like charging) may not be available with this connection.
- DLNA. A technology used to connect various electronic devices into a single digital network with the ability to directly exchange content. Devices for which support for this standard is declared are able to communicate effectively regardless of the manufacturer. An AV receiver with DLNA can, for example, play a movie directly from the hard drive of a computer in the next room, or transfer photos from a smartphone to the TV. Connecting to the Network can be done either wired (LAN) or wirelessly (Wi-Fi, see above).
- Roon Tested. Roon Tested accreditation means the AV receiver is compatible with the popular audiophile music streaming platform Roon. Certified models have undergone a series of tests and meet the quality standards required to operate Roon flawlessly. This ensures convenient management and organization of content within the platform.
— Coordination of Remote control. A function that allows you to connect the AV receiver to another device (for example, a Blu-ray player or external amplifier) and control both devices with one remote control. When purchasing equipment with such a function, it is necessary to clarify compatibility - as a rule, only equipment from one manufacturer can work in such a “bundle”, and even in such cases, their own nuances are possible upon agreement.
— Voice assistant. Receiver support for voice assistant. The most popular assistants these days are:
- Google Assistant
- Apple Siri
- Amazon Alexa
However, other solutions may also emerge. In any case, it is worth noting that we are not talking about an assistant built into the receiver itself, but about compatibility with external devices that have this function (for example, a smartphone or tablet). But even such compatibility allows you to give commands to the receiver by voice - this is often more convenient than more traditional control methods. The specific set of supported commands and languages may vary depending on the voice assistant and its specific version.Decoders
A decoder can be broadly described as a standard in which digital audio (often multi-channel) is recorded. For normal playback of such sound, it is necessary that the corresponding decoder is supported by the device. The first signs of multi-channel decoding were
Dolby Digital and
DTS, gradually improving and introducing new features. The final stage for 2020 is Dolby Atmos and
DTS X decoders. And the intermediate ones were
Dolby TrueHD,
Dolby Pro Logic II,
DTS-HD,
DTS ES,
DTS Neural: X,
DTS Neo (6, X).
Dolby Atmos. A decoder that does not use a rigid distribution of sound across channels, but the processing of audio objects, due to which it can be used with almost any number of channels on a reproducing system — the sound will be divided between channels so that each audio object is heard as close as possible to its proper place. When using Dolby Atmos, in-ceiling speakers (or speakers facing the ceiling) are highly desirable. However, in extreme cases, you can do without them.
— DTS X . An analogue of the Dolby Atmos described above, when the sound is distributed not through individual channels, but through audio objects. The
...digital signal contains information about where (according to the director's intention) the object audible to the user should be and how it should move, and the processor of the reproducing device processes this information and determines exactly how the sound should be distributed over the available channels in order to achieve the required localization. Thanks to this, DTS X is not tied to a specific number of audio channels — there can be as many as you like, the system will automatically divide the sound into them, achieving the desired sound. Also note that this decoder allows you to separately adjust the volume of dialogues.
— IMAX Enhanced. The IMAX Enhanced Mark of Conformity is awarded to equipment that meets the audio certification requirements of IMAX Corporation. Combined with DTS audio technology to deliver signature IMAX theater-like sound in the home. The most accurate reproduction of such audio is possible in systems with a large number of channels (5.1 or more). Note that for a fully immersive experience, IMAX Enhanced certification must also apply to video equipment for playing content (TV, projector, etc.).Coaxial S/P-DIF
The number of
coaxial inputs provided in the design of the receiver.
The coaxial interface is used to transmit audio in digital format. In fact, this is a kind of S / PDIF interface that uses an electric coaxial cable with RCA connectors (“tulip”) for connection. Do not confuse this interface with the analogue RCA described above: the coaxial connection differs in signal type, in the number of jacks per connector (one is enough here), and also does not work well with a regular RCA cable (preferably shielded). S/P-DIF bandwidth is enough to transmit multi-channel audio up to
7.1(see "Number of channels"), but lossless formats like
Dolby TrueHD or
DTS-HD Master Audio(see "Decoders") are not supported.
As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.