Dark mode
United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Samsung Galaxy M21 64 GB / 4 GB vs Samsung Galaxy M31 64 GB

Add to comparison
Samsung Galaxy M21 64 GB / 4 GB
Samsung Galaxy M31 64 GB
Samsung Galaxy M21 64 GB / 4 GBSamsung Galaxy M31 64 GB
from £215.00 
Expecting restock
from £277.95 
Outdated Product
User reviews
TOP sellers
Display
Main display
6.4 "
2340x1080 (19.5:9)
403 ppi
Super AMOLED
Gorilla Glass v3
6.4 "
2340x1080 (19.5:9)
403 ppi
Super AMOLED
Gorilla Glass v3
Display-to-body ratio84 %84 %
Hardware
Operating systemAndroid 10.0Android 10.0
CPU modelExynos 9611Exynos 9611
CPU frequency2.3 GHz2.3 GHz
CPU cores88
GPUARM Mali-G72 MP3ARM Mali-G72 MP3
RAM4 GB6 GB
Memory storage64 GB64 GB
Storage typeUFS 2.1UFS 2.1
Memory card slotmicroSDmicroSD
Max. memory card storage512 GB512 GB
Test results
AnTuTu Benchmark180 000 score(s)195 000 score(s)
Geekbench1191 score(s)1288 score(s)
Main camera
Lenses3 modules4 modules
Main lens
48 MP
f/2.0
26 mm
 
1/2"
64 MP
f/1.8
26 mm
81 °
1/1.72"
Ultra wide lens
8 MP
f/2.2
12 mm
 
1/4"
8 MP
f/2.2
12 mm
123 °
1/4"
Auxiliary lens
Macro lens
Full HD (1080p)30 fps30 fps
4K30 fps30 fps
Slow motion (slow-mo)240 fps
Camera zoom2 x2 x
Flash
Front camera
Form factorteardropteardrop
Main selfie lens20 MP32 MP
Aperturef/2.0f/2.0
Full HD (1080p)30 fps30 fps
Connections and communication
Cellular technology
4G (LTE)
4G (LTE)
SIM card typenano-SIMnano-SIM
SIM slots2 SIM2 SIM
Connectivity technology
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
NFC
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
NFC
Inputs & outputs
USB C
mini-Jack (3.5 mm) bottom
USB C
mini-Jack (3.5 mm) bottom
Features and navigation
Features
rear fingerprint scanner
FM receiver
noise cancellation
gyroscope
light sensor
rear fingerprint scanner
 
noise cancellation
gyroscope
 
Navigation
aGPS
GPS module
GLONASS
digital compass
aGPS
GPS module
GLONASS
digital compass
Power supply
Battery capacity6000 mAh6000 mAh
Battery life (PCMark)15 h14.6 h
Fast chargingnoneSamsung Charge
Charger power15 W
General
Bezel/back cover materialplastic/plasticplastic/plastic
Dimensions (HxWxD)159x75.1x8.9 mm159.2x75.1x8.9 mm
Weight188 g191 g
Color
Added to E-Catalogmarch 2020february 2020

RAM

The parameter determines the overall performance of the smartphone: the more RAM, the faster the device works and the better it copes with an abundance of tasks and / or resource-intensive applications (ceteris paribus). This is even more true in light of the fact that large amounts of "RAM" are usually combined with powerful advanced processors. However, only devices with identical operating systems can be directly compared with each other, and in the case of Android, with the same versions and editions of this OS (for more on all this, see "Operating system"). This is due to the fact that different operating systems and even different versions of the same OS can differ markedly in terms of RAM requirements. For example, iOS, thanks to good optimization for specific devices, is able to work efficiently with 3 GB of RAM. For modern versions of Android in the regular edition (not Go Edition), the mentioned 3 GB is actually the required minimum. Under such an OS, it is better to have at least 4 GB or 6 GB of RAM. In high-end devices with powerful electronic "stuffing" you can also find more impressive numbers - 8 GB or even 12 GB or more.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 900K points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.

Lenses

The number of individual lenses provided in the module of the main (rear) camera of the device. Specified only if there are several lenses. At the same time, each «eye» has its own sensor and, in fact, is a separate camera; however, they can be used in conjunction, forming one image from data from several lenses, or mutually complementing each other's capabilities. As an illustration of the second case, the following example can be given: when using the zoom, the smartphone can automatically switch from the main optics to the telephoto lens when the magnification selected by the user exceeds a certain threshold.

The simplest version of the main module with several lenses is a dual camera, however, devices with 3 or more rear cameras are becoming more common (in some models, the number of lenses can reach six). Anyway, these cameras usually differ in specifications and perform different functions. So, an ordinary colour camera can be supplemented with a lens for black-and-white shooting, which improves contrast; in some models, lenses with different focal lengths allow you to choose the optimal viewing angle for certain conditions; information from an auxiliary lens (see below) is usually used to adjust the depth of focus on an already finished shot, etc. These details should be clarified separately, but anyway, several lenses mean more shooting options.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.

Ultra wide lens

Specs of the ultra wide-angle lens of the main camera installed in the phone.

These details are relevant only for cameras with several lenses (see "Number of lenses") — and not all, but only those where there is a lens with a small focal length (much less than in the main lens) and, accordingly, wider viewing angles. It is called ultra-wide. In the same paragraph, four main parameters can be indicated: resolution, aperture ratio, focal length and additional sensor data.

Resolution(in megapixels, MP)
The resolution of the sensor used for the ultra-wide lens.

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture" allows you to capture small details better. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality — due to the smaller size of each individual pixel, the noise level increases. As a result, the direct resolution of the camera has little effect on the quality of photos and videos — a lot also depends on the size of the sensor, the features of the optics and various design tricks used by the manufacturer. At the same time, we note that the more megapixels a camera has, the more likely it is to implement various additional solutions aimed at improving image quality.

As for the specific resolution of ultra-wide optics, it can co...rrespond to the number of megapixels in the main lens (see "Main lens") or be lower, sometimes quite noticeable (for example, 8 MP with the main optics at 48 MP). This is due to the fact that an ultra-wide-angle lens often plays a secondary role, for which a small resolution is more than enough.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, that is, for example, an f/2.6 lens will transmit less light than f/1.9.

High aperture gives the camera a number of advantages: it allows you to shoot at low shutter speeds, minimizing the likelihood of “shake”, and also makes it easier to shoot in low light and shoot with artistic background blur (bokeh). However, for an ultra-wide lens, such features are not as important as for the main camera — such lenses usually have a specific purpose, and their small aperture is often more desirable, which allows you to increase the depth of field. So in general, this parameter is more of a reference than practically significant when choosing.

Focal length
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the sensor. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles).

Anyway, the viewing angle and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller viewing angle and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. Ultra-wide optics, by definition, must have very short focal lengths — smaller than the corresponding main optics. However, "ultra-wide" focal lengths typically range from 13 mm to 26 mm; such values are not rare among the main lenses. At the same time, there is nothing illogical here — the point is the ratio of focal lengths in each individual smartphone. For example, a camera with a 25mm primary lens can carry a 16mm or 17mm ultra-wide lens; and models with a primary lens less than 24mm usually do not have additional ultra-wide optics at all, since the existing lens perfectly plays this role just fine. Also note that the difference between these types of optics is not as significant as one might imagine; and in some devices, both focal lengths are generally the same, while the difference in specialization is achieved due to the features of image processing in each lens.

Field of view(in degrees) It is the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this angle, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, the field of view data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras in this way. As for specific values, ultra-wide-angle optics, by definition, have very wide angles — from 107° and above; in some models, this figure reaches 125°.

Additional Sensor Data
Additional information regarding the sensor installed in the ultra-wide lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-class sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/3.1" sensor will be larger than 1/4". Larger sensors are considered more advanced, as they provide a better image at the same resolution. This is due to the fact that due to the larger sensor area, each individual pixel is also larger and receives more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. However, in ultra-wide lenses, the sensors are generally noticeably smaller than in the main ones — for example, the mentioned 1/3.1" and 1/4" are quite common options. This is primarily due to the secondary role of such cameras.

Macro lens

The presence of a macro lens in a smartphone. In some models, this feature is performed by a separate specialized lens, in others — by the lens of the main camera, which operates in a special mode.

Macro photography, for which such lenses are used, is a special mode that allows you to get very large and detailed images of miniature objects (for example, dew drops or a small insect). This mode is most often used as an artistic tool, but it can also be useful for other purposes, such as scientific ones. And the presence of a full-fledged macro lens means that the smartphone has quite advanced capabilities for such shooting. At the same time, the main camera is considered a macro lens only if it is capable of performing macro photography from a distance of 3 cm or less.

Slow motion (slow-mo)

The frame rate supported by the phone in slow motion (slow-mo).

In general, such shooting is called "high-speed" because it is carried out at an increased frame rate (more than 60 frames per second). As a result, when playing at normal speed (60 fps and below), the video looks slow (hence the name “slow-mo”). Such slowing down can be used just for fun, and as an artistic tool, and even for scientific purposes — to capture movement that is too fast for human perception. Anyway, the higher the slow-mo frame rate, the more you can slow down the video and the more advanced the camera is in this regard; the minimum value nowadays is actually 120 fps, and in advanced devices this figure is 480 fps and even more(in some models — more than 7000 frames per second). On the other hand, the higher the frame rate, the more performant the GPU should be; and this, in turn, affects the price of the device, sometimes quite noticeably.

Also note that slow-mo shooting can only be available at certain resolutions, which are not always the maximum; these points can be directly specified in the specs of the smartphone.
Samsung Galaxy M21 often compared
Samsung Galaxy M31 often compared