Form factor
The form factor of a computer case characterizes, first of all, the internal volume. Main PC Form Factors:
—
Midi Tower. A representative of the tower family (tower cases) of medium size — about 45 cm in height with a width of 15-20 cm, with the number of external bays from 2 to 4. Most popular for middle-class home PCs.
—
Mini Tower. The most compact "vertical" case type, with a width of 15-20 cm, has a height of about 35 cm and (usually) less than 2 compartments with external access. Used mainly for office PCs that do not require high performance.
—
Full Tower. The tower case is one of the largest form factors for PCs today: 15-20 cm wide, 50-60 cm high, with up to 10 externally accessible bays. Most often in this form factor running advanced high performance PCs
—
Desktop. Enclosures designed for installation directly on the desktop. They often have the possibility of horizontal installation — in such a way that a monitor can be placed on top of the case — although there are also models that are installed strictly vertically. Anyway, "desktop" models are relatively small.
—
Cube Case. Cases having a cubic or close to it shape. They can have different sizes and are intended for different types of motherboards, this point in each case should be clar
...ified separately. Anyway, such cases have a rather original appearance, different from traditional "towers" and "desktops".Chipset
The model of the chipset used in the standard configuration of the PC.
A chipset can be described as a set of chips that provides the combined operation of the central processor, RAM, I / O devices, etc. It is this chipset that underlies any motherboard. Knowing the chipset model, you can find and evaluate its detailed characteristics; most users do not need such information, but for specialists it can be very useful.
Model
The specific model of the processor installed in the PC, or rather, its index within its series (see "Processor"). The full model name consists of the series name and this index — for example, Intel Core i3 3220; knowing this name, you can find detailed information about the processor (characteristics, reviews, etc.) and determine how suitable it is for your purposes.
Threads
The number of threads supported by the bundled PC processor.
A thread in this case is a sequence of instructions executed by the kernel. Initially, each individual core is able to work with only one such sequence. However, among modern CPUs, more and more often there are models in which the number of threads is twice the number of cores. This means that the processor uses multi-threading technology, and each core works with two instruction sequences: when pauses occur in one thread, the core switches to another, and vice versa. This allows you to significantly increase performance without increasing the clock frequency and heat dissipation, however, such CPUs are also more expensive than single-threaded counterparts.
Speed
Clock speed of the CPU installed in the PC.
In theory, higher clock speeds have a positive effect on performance because they allow the CPU to perform more operations per unit of time. However, this indicator is rather weakly related to real productivity. The fact is that the actual capabilities of the CPU strongly depend on a number of other factors - the overall architecture, cache size, number of cores, support for special instructions, etc. As a result, you can compare by this indicator only chips from the same or similar series (see “CPU”), and ideally, also from the same generation. And that's pretty approximate.
TurboBoost / TurboCore
Processor clock speed when running in TurboBoost or TurboCore mode.
Turbo Boost technology is used in Intel processors, Turbo Core — AMD. The essence of this technology is the same both there and there: if some of the cores work under high load, and some are idle, then some tasks are transferred from more loaded cores to less loaded ones, which improves performance. This usually increases the clock frequency of the processor; this value is indicated in this paragraph. See above for more information on clock speed in general.
Memory type
The type of RAM used in the computer. This indicator describes both the general level of "RAM" and the possibilities for replacing and upgrading it: different types of RAM are not compatible with each other.
Here are the types of memory that are relevant for modern PCs:
—
DDR3. The third generation of RAM with the so-called double data transfer. Some time ago, this standard was the most popular in computer technology, but now it is increasingly losing ground to newer and more advanced standards, primarily DDR4. In compact computers, there is a "mobile", energy-saving version of this memory standard — LPDDR3.
—
DDR3L. A modification of DDR3 memory that supports operation at a reduced voltage — 1.35 V instead of 1.5 V (Low Voltage — hence the index L). Lower voltage improves performance. These modules are compatible with classic DDR3 slots.
—
DDR4. Further, after DDR3, the development of the DDR standard, released in 2014. It features both increased performance and increased volumes — the capacity of one bar can be from 2 to 128 GB. Thus, the maximum amount of RAM in most PCs is limited more by the capabilities of the motherboard than by the characteristics of existing brackets. DDR4 is very popular in modern computer technology, including desktop PCs.
Max. memory support
The maximum amount of RAM that can be installed on a computer. It depends, in particular, on the type of memory modules used, as well as on the number of slots for them. Paying attention to this parameter makes sense, first of all, if the PC is bought with the expectation of upgrading RAM and the amount of actually installed memory in it is noticeably less than the maximum available
So the amount of maximum installed memory depends on the number of slots in the PC and can be from
16 GB(a modest PC) to
64 GB and above. The most popular on the market are
PCs with a maximum installed 32 GB of memory.
Graphics card type
The type of graphics card used in the PC. Modern computers can be equipped with both
integrated modules (among those you can find products of
Apple and
Intel –
HD Graphics,
UHD Graphics and
Iris) and
discrete video cards (including
professional ones), which can be installed in several pieces using
SLI or CrossFire technology. In addition, on the market you can find configurations that are not equipped with graphics adapters at all. Here is a more detailed description of each option:
— Integrated. Video cards that are built directly into the processor (less often, into the motherboard) and do not have their own dedicated memory: the memory for video processing is taken from the general “RAM”. The main advantages of such modules are low cost, low power consumption, minimal heat release (which does not require special cooling systems), and extremely compact dimensions. On the other hand, the performance of this type of graphics is low: it is enough for simple everyday tasks like web surfing, watching videos and undemanding games, but for more serious purposes it is still desirable to have a discrete video adapter in the system. And the fact that integrated systems take
...up part of the system RAM during operation does not contribute to performance either.
— Discrete. Video cards in the form of separate modules with a specialized processor and their own memory. They are noticeably more expensive than integrated ones, take up more space and consume more energy, but all these shortcomings are offset by a key advantage — high performance. This allows you to work even with “heavy” graphic content like modern games, 3D rendering, high-resolution video editing, etc. (although the specific characteristics of discrete graphics, of course, may be different). In addition, graphics processing in such systems does not use the main RAM, which is also an important advantage. For additional performance enhancement, discrete video adapters can be combined into SLI / CrossFire systems, this option is indicated separately (see below). Also note that in most modern PCs, such graphics are combined with a processor with an integrated graphics core, and often work in hybrid mode: the integrated module is used for simple tasks, and when the load increases, the system switches to a discrete graphics card.
— SLI/CrossFire. Several discrete video cards (see above) bundled using SLI technology (NVIDIA is used) or Crossfire (AMD is used). From the point of view of an ordinary user, there are no fundamental differences between these technologies: both of them allow you to combine the computing power of several video cards, thus increasing graphics performance. However, such graphics are not cheap, and therefore they are used exclusively in high-performance PCs with an emphasis on graphic capabilities — in particular, gaming ones.
— Sold separately. The absence of any graphics card in the initial configuration of the PC. A rather rare option found in some high-end workstations: such configurations are equipped with professional processors without an integrated graphics core and do not have discrete graphics — it is assumed that such an adapter is more convenient for the user to buy separately.