Dark mode
United Kingdom
Catalog   /   Office & Stationery   /   Printing & Polygraphy   /   Plotter Printers

Comparison Canon imagePROGRAF TM-300 vs Canon imagePROGRAF iPF750

Add to comparison
Canon imagePROGRAF TM-300
Canon imagePROGRAF iPF750
Canon imagePROGRAF TM-300Canon imagePROGRAF iPF750
from £1,857.72 
Outdated Product
from $1,552.00
Outdated Product
TOP sellers
Product Typeinkjetinkjet
Paper sizeA0A0
Output Typecolourcolour
Placementfloorfloor
Printing
Max resolution2400x1200 dpi2400x1200 dpi
Sheet printing time40 с
Drop volume5 pl4 pl
Sheet printing
Roll printing
Specs
Media width (min)203 mm203 mm
Media width (max)917 mm914 mm
Max. roll diameter150 mm150 mm
Number of rolls11
Paper grammage (min)80 g/m²
Paper grammage (max)255 g/m²
Data transfer
PC connection (USB)
network connection (LAN)
Wi-Fi 4 (802.11n)
PC connection (USB)
network connection (LAN)
 
General
Number of cartridges55
Cartridge modelPFI-120BK, PFI-120MBK, PFI-120C, PFI-120M, PFI-120Y, PFI-120MBKPFI-102BK, PFI-102MBK, PFI-102C, PFI-102Y, PFI-104M
Built-in memory2048 MB256 MB
Displaytouchmonochrome
Noise level44 dB50 dB
Power consumption69 W140 W
Dimensions with stand (WxDxH)1289x887x1060 mm1304x870x1062 mm
Weight60 kg62.9 kg
Added to E-Catalogmarch 2019july 2014

Sheet printing time

Approximate time taken by the plotter to print one sheet.

This indicates for the paper size that the machine was originally designed for (see "Paper Size"). And it is approximate because it is usually given for optimal or almost optimal printing conditions: low quality and resolution, relatively simple images, etc. So the actual print time of the sheet may differ from the claimed one in one direction or another, depending on the operating parameters — starting from the mentioned quality and resolution to the type of media. However, according to the figures indicated in the specs, it is quite possible to evaluate different models and compare them with each other: the difference in the claimed time, usually, will proportionally correspond to the difference in the actual printing speed.

It is also worth noting that this time is usually indicated by the duration of the printing process itself — from the capture of the sheet by the feeder to the output of the completed print from the device. Interruptions inevitably occur between printing individual sheets, so that the total printing time is longer than the printing time of a sheet multiplied by the number of sheets. For example, a device with a time consumption of 36 sec per sheet theoretically should print about 100 sheets per hour (1 h = 3600 s, 3600/36 = 100), but in fact such a plotter usually produces about 70 – 75 sheets in this time.

Drop volume

The smallest drop volume of ink that can be produced by the printhead of an inkjet or similar plotter (see "Product Type").

This parameter is directly related to the print resolution (see “Maximum resolution”): the more dots per inch, the smaller the separate dots and, accordingly, the drops should be. At the same time, models with the same dpi number may differ slightly in this parameter. In such cases, it should be assumed that a smaller droplet volume potentially provides better print quality, with more accurate reproduction of fine lines and borders between individual areas of the image, however, such features accordingly affect the price of the device.

Media width (max)

The largest width of paper or other media that the plotter can handle. The larger this parameter, the larger the materials that can be printed on the device; however, the dimensions, weight and cost of the plotter also increase markedly due to this.

Paper grammage (min)

The lowest grammage of paper that the plotter can print normally on. Grammage is expressed in grams per square metre; accordingly, the more dense the paper, the thicker it is, and the greater the difference between the minimum and maximum paper grammage, the greater the range of materials the plotter can operate with.

The use of materials that are too thin can lead to a number of troubles: multi-sheet picking, creasing, jamming, etc. Therefore, if you plan to use low-grammage paper, you should pay special attention to this characteristic.

Paper grammage (max)

The highest paper grammage that the plotter can handle normally. For details about grammage, see "Paper grammage (Min)"; and you should pay attention to its maximum value if you plan to use thick materials. Do not try to print on more dense media than it is specified in the specs of the device: even if the plotter can handle such paper normally, it can cause serious damage.

Data transfer

Data transfer supported by the plotter.

In addition to direct connection to a PC via USB, supported by the vast majority of such devices, connection to PC network is very popular nowadays — usually via a wired LAN port, and often via Wi-Fi. The last one may additionally support special modes of operation — Wi-Fi Direct and/or . You can also find plotters with support of external media — in the form of a card reader or its own USB port for flash drives.

Here is a more detailed description of each of these options:

— Connection to a PC (USB). Connecting to a standard USB port on a PC or laptop is a classic data transfer format found in almost all modern plotters. It allows you to send print tasks to the device, manage settings, receive various operation notifications on your PC, save digitized materials from the built-in scanner (if available — see above), etc. The disadvantages of this connection include the fact that it is designed for interaction between the plotter and only one specific PC. Anyway, you can also manage a network sharing on this PC — but this is quite complicated; it is easier to immediately select a device with network connectivity (see below).

— Network connection (LAN).... LAN connection via wired LAN interface. By itself, network connectivity at least makes the plotter accessible from any PC on the local network; and some models even allow to be used over the Internet. In addition, such devices may provide various specific network functions — for example, sending materials from a scanner to file storage or e-mail. A wired connection is not as convenient as Wi-Fi — in fact, because of the need to run a wire — but it is cheaper, and it also provides a more stable and reliable connection, not dependent on obstacles and interference levels near the device.

— USB (for flash drives). USB port for connecting various external media, installed in the plotter. In addition to flash drives, this connector can be used for external HDDs, as well as for cameras and many other portable devices with built-in storage. In any case, such a connection is mainly used for direct printing — sending files for printing without using a PC. And if you have a scanner (see above), you can also copy scanned materials to an external device via the USB port. Navigation through the contents of external media is usually carried out using the display installed on the plotter.

— Card reader. Built-in memory card reader — most often SD format (although specific types and volumes of supported cards should be clarified separately, since the SD standard covers several subspecies of media). The use of this function is generally similar to the USB port for flash drives described above — it makes it possible to print files directly from external media, as well as save data received from the scanner (if available) to this media. Memory cards are now supported in many types of electronic devices — in particular, laptops are almost always equipped with card readers, and in digital cameras this type of media is used as a standard for saving footage. Accordingly, the presence of a card reader in the plotter facilitates data exchange with such equipment: removing and inserting a card is often easier than copying materials to a computer or fiddling with a direct USB connection (if it is available at all).

— WiFi. The presence of its own Wi-Fi module allows the plotter to connect to PC network, as well as use special features such as Wi-Fi Direct and Airprint. See below for such features; as for the network connection, it provides all the same features as the wired LAN standard described above. At the same time, a Wi-Fi connection is much more convenient, as it allows you to do without laying cables. True, such a connection is somewhat more expensive, besides, the data transfer rate may drop with an abundance of interference; however, for plotters, the last one is most often not critical, and the price of a Wi-Fi module is often insignificant compared to the price of the entire device. So most modern network models support not only wired, but also wireless connections.
Specifications may also specify the Wi-Fi standard used by the device; most often it is Wi-Fi 4 or Wi-Fi 5. However, the difference between these standards in this case is not fundamental: both of them provide sufficient speed for functions implemented in plotters, and modern wireless equipment usually provides compatibility with all major Wi-Fi standards .

— WiFi Direct. A feature found on models with built-in Wi-Fi modules (see above). Direct support allows you to connect other Wi-Fi devices (laptops, smartphones, cameras, etc.) to such a plotter directly, without using a router and a local network. This can be especially convenient if there is no network equipment, or if it needs to be additionally configured. The set of functions available with this connection includes, at least, sending materials to print; however, control of plotter settings and other more specific features may also be provided.

— AirPrint. Wireless direct printing technology found on Apple devices such as iPhones, iPads, MacBooks, and more. AirPrint printing is convenient and simple—it requires no additional setup when connected to a plotter and can be done with just one touch ". In this case, communication with the printing device is carried out via Wi-Fi directly — similar to the Wi-Fi Direct described above (in fact, AirPrint is usually provided as an addition to this mode).

Cartridge model

Models of cartridges used in the plotter. With this info, you can easily find original consumables for the device.

Built-in memory

The amount of built-in memory provided in the design of the plotter.

Such memory is used to store various service data: print tasks, settings profiles, etc. Due to this, the plotter becomes more "independent": for example, many models allow you to continue printing even when the master PC is turned off.

We emphasize that in this case we are talking about solid-state flash memory, which is used mainly for "operational" service information. The capacity of such memory is relatively low, it is measured in megabytes; but in addition to it, the design may include a larger storage capacity — usually a traditional hard drive. For more information about it, see "Drive Capacity".

Display

The type of display provided in the design of the plotter.

The presence of the display significantly expands the control capabilities, makes it more convenient and with visual appearance. Such a screen can display at least various information about the operation state of the device; and in many cases it is also used for specific functions — direct control of plotter settings, selection of materials for printing from a USB-drive or card reader (see "Data transfer"), etc. Thereby, models that do not have display at all, are extremely rare nowadays; usually they are units with the most basic functionality, as like "only printing and nothing more." In other cases, the types of displays can be as follows:

— Monochrome. Single colour (usually black and white) display. Such displays usually also have a rather modest resolution, so their capabilities are severely limited compared to colour ones. However, this option is somewhat cheaper, but in this case this is its only advantage. Therefore, devices with monochrome display are not very popular nowadays.

Colour. A display capable of rendering different colours. The specific quality of colour displays can vary from the simplest panels with a couple of hundred (or even tens) shades, to high-end solutions that are not inferior to PC monitors. However, anyway, the colour display has more extensive possibilities than monochrome. So, among other things, it can be used t...o preview images before printing, and they will look quite authentic. Such equipment costs more than monochrome panels, but this difference is usually not fundamental compared to the cost of plotters in general. So most of these devices nowadays are equipped with colour display. Such a display also often made with a touch screen(see below), although there are also traditional, non-touch colour displays.

— Touch screen. A touch screen similar to those used in modern tablets, which allows you to manage the device by touching the image on the display. Such control is often much more comfortable and functional than using a panel with traditional buttons, knobs, etc.: a variety of controls (buttons, sliders, counters, interactive menus, etc.) can be displayed on the touch screen, and for each situation, you can use your own, the most optimal set of such elements. In addition, it is convenient to view graphic information on such displays (drawings for printing, data from a scanner, etc.) — the screens themselves are usually coloured and have a fairly high resolution, and sensors make it easy to change the scale and move the image in the right direction. The presence of the touch screen affects the cost of the display, but in this case this moment is not fundamental. Such displays in modern plotters are very popular: a colour display in such a device is most likely also a touch screen.
Canon imagePROGRAF TM-300 often compared