Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   Graphics Cards

Comparison Asus GeForce GT 710 GT710-SL-1GD5 vs MSI GT 710 1GD3H LP

Add to comparison
Asus GeForce GT 710 GT710-SL-1GD5
MSI GT 710 1GD3H LP
Asus GeForce GT 710 GT710-SL-1GD5MSI GT 710 1GD3H LP
from £49.99 
Expecting restock
from £63.08 
Outdated Product
User reviews
TOP sellers
InterfacePCI-E v2.0PCI-E v2.0
GPU
GPU modelNVIDIA GeForce GT 710NVIDIA GeForce GT 710
Memory size1 GB1 GB
Memory typeGDDR5DDR3
Memory bus32 bit64 bit
GPU clock speed954 MHz954 MHz
Memory clock5012 MHz1600 MHz
Lithography28 nm28 nm
Max. resolution2560x1600 px4096x2160 px
Connections
VGA11
DVI-D11
HDMI11
Software
DirectX1212
OpenGL4.54.5
Stream processors192192
Stream processor version55
Texture units1616
General
Monitors connection22
Coolingpassive (heatsink)passive (heatsink)
Power consumption19 W
Number of slots11
Length167 mm146 mm
Added to E-Catalogjune 2017january 2016

Memory type

The type of graphics memory used by the graphics card (see GPU memory capacity). To date, the following types of memory are used:

DDR3. General purpose RAM that is not specialized for graphics processing and was originally designed for use in the general system RAM. However, due to good performance and relatively low cost, it has recently been used in video cards (albeit, mainly at a low-cost level).

— DDR4. Further, after DDR3, the development of general-purpose RAM. Specifically, it is extremely rare in video cards, due to the prevalence of more advanced specialized standards.

— GDDR2. The second generation of memory built using Double Data-Rate technology (“double data transfer rate”). In fact, it is a modification of DDR2 RAM, optimized for use in video cards; just like the original DDR2, it provides 4 data transfer operations per cycle (original DDR — 2 operations). It has not received wide popularity due to the tendency to strong heating during operation.

GDDR3. Improved version of GDDR2 (see above). It has a higher effective frequency (as a result, performance), while differing in lower heat dissipation. Some time ago it enjoyed considerable popularity, now it is gradually falling into disuse, giving way to more advanced standards.

GDDR5. Pretty advanced video memory format; unlike earlier versions of GDDR...(see above), it is based on DDR3 RAM.

GDDR5X. A further enhancement to GDDR5 memory designed to increase bandwidth (and thus overall speed and graphics performance). Various design improvements made it possible to achieve a 2-fold increase in maximum speed — up to 12 Gbps versus 6 Gbps for the original GDDR5. At the same time, although GDDR5X is inferior in terms of characteristics to HBM (see below), it is also much cheaper.

GDDR6. Further, after GDDR5X, the development of GDDR-type graphic memory. Achieve data rates up to 16Gb/s per pin, nearly double that of GDDR5, at a lower operating voltage. Such characteristics allow the use of GDDR6 to work with 4K resolutions and higher, as well as virtual reality systems; video cards with such memory are mainly classified as top-end solutions.

GDDR6X. An improved version of GDDR6 released in Fall 2020. According to the creators, it is the fastest graphics memory at the time of release. One of the key updates is the use of the so-called multi-level PAM4 modulation, which allows you to transfer 2 bits of data per cycle (versus 1 bit for its predecessors). Due to this, the bandwidth of GDDR6X can reach 21 Gbps per pin and 1 TB / s for the entire memory block (versus 16 Gbps and 700 Gbps, respectively, in the previous version). This type of memory is great even for the most powerful modern video cards, but it also costs accordingly.

HBM. A type of memory designed to maximize throughput. It differs fundamentally from various versions of GDDR in that the HBM module is built on the "sandwich" principle — the memory chips in it are placed in layers and allow simultaneous access; and for communication with the processor, a special silicon layer is used, the so-called "interposer", which provides efficient transfer of large amounts of data. Due to this, HBM is significantly (many times) faster than even the most advanced versions of GDDR, and the clock frequency of such memory modules is low, which gives another advantage — extremely low power consumption and heat dissipation. The main disadvantage of this technology is its high cost.

HBM2. The second generation of high-speed HBM memory, introduced in 2016. See above for more on the general features of HBM, and HBM2 has doubled throughput compared to the first version of this technology. Thanks to this, such memory is great for resource-intensive tasks like working with virtual reality.

Memory bus

The amount of data (bits) that can be transferred over the graphics card's memory bus in one cycle. The performance of the graphics card directly depends on the bus width: the higher the bit width, the more data the bus transfers per unit of time and, accordingly, the video memory runs faster.

The minimum bit depth for modern video cards is actually 128 bits, this figure is typical mainly for low-cost models. In mid-level solutions, there are indicators of 192 bits and 256 bits, and in advanced models — 352 bits, 384 bits and more, up to 2048 bits.

Memory clock

The speed at which a video card can process data stored in its video memory. In fact, the indicator determines the maximum number of operations to receive or transmit data by a memory module per unit of time. This frequency is expressed in megahertz (MHz) – millions of operations per second. High video memory frequency helps improve performance when performing resource-intensive tasks such as texture processing, graphics rendering and other graphics operations. However, the parameter is by no means the only factor that influences the overall performance of the video card – it is important to take into account the GPU architecture, number of cores, core frequency and other characteristics.

Max. resolution

The maximum resolution supported by the graphics card — that is, the largest image size (in pixels) that it can display on an external screen.

The higher the resolution, the clearer and better the picture is. On the other hand, with an increase in the number of pixels, the requirements for computing power and, accordingly, the cost of a graphics card increase. In addition, do not forget that you can only appreciate the full benefits of high resolutions on monitors with the appropriate characteristics. On the other hand, in the graphics settings, you can set lower resolutions than the maximum; and a good resolution margin means a good overall performance margin.

As for specific values, the actual minimum for modern video cards is 1600x1200, but higher rates are much more common — up to Ultra HD 4K and Ultra HD 8K.

Power consumption

Maximum power consumed by the graphics card during operation. This parameter is important for calculating the total power consumed by the entire system and selecting a power supply that provides the appropriate power.

Length

The total length of the graphics card.

In this case, the length means the size of the device from the plate with connectors (which is attached to the back wall of the system unit) to the opposite side. The plate itself and the outwardly protruding connectors are usually not taken into account.

Data on the length of the graphics card is needed primarily in order to assess whether there is enough space for it in a particular case. In addition, longer boards, usually, have more advanced characteristics (although there is no hard dependence here, and video adapters of similar class may have different lengths). As for specific values, the most compact solutions nowadays have a size of 150 – 200 mm or less ; an indicator of 200 – 250 mm can still be considered relatively small, 250 – 290 mm — medium, and many models (mostly advanced) have a length of more than 290 mm.
Asus GeForce GT 710 GT710-SL-1GD5 often compared