Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Acer H6810 vs Acer H7850

Add to comparison
Acer H6810
Acer H7850
Acer H6810Acer H7850
Outdated ProductOutdated Product
TOP sellers
Main
Support for HDR technology
Support for HDR technology
Main functionhomehome
Lamp and image
Lamp typeUHPUHP
Lamp modelMC.JQE11.001MC.JPC11.002
Service life4000 h4000 h
Service life (energy-saving)10000 h10000 h
Lamp power240 W240 W
Brightness3000 lm
Brightness ANSI Lumens3500 lm
Dynamic contrast10 000:11 000 000:1
Colour rendering1.07 billion colours1.07 billion colours
Horizontal frequency15 – 135 kHz15 – 135 kHz
Frame rate24 – 120 Hz24 – 120 Hz
Projection system
TechnologyDLPDLP
Size0.47"
Real resolution3840x2160 px3840x2160 px
Image format support4:3, 16:9, 16:1016:9, 16:10, 4:3
HDR support
Resolution enhancement
Projecting
Rear projection
Throw distance, min1 m1.3 m
Throw distance, max9.75 m9.3 m
Image size26 – 300 "26 – 302 "
Throw ratio1.47:1 – 1.76:11.39:1 – 2.22:1
Optical zoom1.2 x1.6 x
Digital zoom2 x
Zoom and focusmanualmanual
Keystone correction (vert), ±40 °15 °
Features
Features
 
 
DLNA support
MHL support
Wi-FiWi-Fi ready
Hardware
USB 2.011
Number of speakers12
Sound power10 W10 W
Video connectors
VGA
VGA
HDMI inputs22
HDMI versionv 2.0
Audio connectors
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
Service connectors
COM port (RS-232)
USB (slave)
 
COM port (RS-232)
USB (slave)
LAN (RJ-45)
General
Noise level (nominal)30 dB29 dB
Noise level (energy-saving / quiet)24 dB26 dB
Power sourcemainsmains
Power consumption335 W315 W
Size (HxWxD)125x343x258 mm127x398x298 mm
Weight4 kg5.3 kg
Color
Added to E-Catalogseptember 2018august 2017
Price comparison

Lamp model

The lamp model that the projector is designed for. Most projectors come with lamps included, so this information is not needed for normal use. But when looking for a spare lamp or replacement, information about model can be very useful: finding a spare part by the exact name is much easier than by general data like the brand of the projector.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Size

The size of the panel/chip affects the depth and final quality of the image. The larger the panel/chip, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classic 4:3 and...wide-angle 16:9.

Resolution enhancement

Resolution enhancement technology uses software algorithms to improve image quality. Resolution enhancement makes textures sharper. There are many ways to do this: noise reduction, contrast enhancement, colour correction, etc. Of course, you can not count on a significant result when improving the resolution in a software way, but it can provide a noticeable effect. Resolution enhancement can be very useful in cases where the projector displays the image on a large screen, capturing the largest possible diagonal.

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.

Throw distance, max

The farthest distance from the screen that the projector can be used on. This is the maximum distance at which the image remains in focus and maintains acceptable brightness — at least enough for viewing in a darkened room on a high-quality screen.

It is necessary to choose according to this parameter taking into account the expected operating conditions and the distances to be dealt with. At the same time, it's ok to have a certain margin for the maximum distance — since, as already mentioned, it is usually indicated for an perfect screen and a darkened room, and such conditions are not always available. Also note that although the throw distances depend on the lens, not every projector with an interchangeable lens allows the installation of more "long-range" optics than the standard one — the device may simply not have enough brightness for an increased distance.
Acer H6810 often compared
Acer H7850 often compared